首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to reduce anisotropic behaviors of sandwich plates with open channel cores under the bending load, bi-directionally corrugated cores were introduced. Bi-directionally corrugated core has two additional design parameters related with a corrugation pass than uni-directionally corrugated core, so that its properties with respect to core orientations can be controlled. Sandwich plate with bi-directionally corrugated core is designed optimally so that beam buckling of face sheets is reduced drastically and anisotropic buckling behavior in the face sheets is minimized. The cores fabricated by a sectional forming process were bonded with face sheets by adhesive bonding. Three-point bending experiments were carried out with respect to core orientations. It has been shown from the experiments that sandwich plates with bi-directionally corrugated cores exhibit quasi-isotopic bending behaviors and structural performances in sandwich plates.  相似文献   

2.
In this paper, the response and failure of sandwich beams with aluminum-foam core are investigated. Quasi-static and low-velocity impact bending tests are carried out for sandwich beams with aluminum-foam core. The deformation and failure behavior is explored. It is found that the failure mode and the load history predicted by a modified Gibson's model agree well with the quasi-static experimental data. The failure modes and crash processes of beams under impact loading are similar to those under quasi-static loading, but the force-displacement history is very different. Hence the quasi-static model can also predict the initial dynamic failure modes of sandwich beams when the impact velocity is lower than 5 m/s.  相似文献   

3.
泡沫铝层合梁的三点弯曲变形   总被引:20,自引:0,他引:20  
研究了泡沫铝层合梁三点弯曲的载荷(P)-位移(δ)曲线、变形过程及面板破坏、夹芯剪切破坏、凹陷破坏等破坏模式。用极限载荷公式得到的计算值与实验值符合良好。实验所得的加载和卸载刚度(P/δ)与计算结果吻合较好。泡沫铝层合梁具有较低的密度((0.42~0.92)×10~3kg/m~3)和很高的弯曲比刚度(E~(1/2)/ρ)。利用极限载荷公式建立了破坏模式图。  相似文献   

4.
The dynamic compressive response of corrugated carbon-fibre reinforced epoxy sandwich cores has been investigated using a Kolsky-bar set-up. Compression at quasi-static rates up to v0 = 200 ms−1 have been tested on three different slenderness ratios of strut. High speed photography was used to capture the failure mechanisms and relate these to the measured axial compressive stress. Experiments show significant strength enhancement as the loading rate increases. Although material rate sensitivity accounts for some of this, it has been shown that the majority of the strength enhancement is due to inertial stabilisation of the core members. Inertial strength enhancement rises non-linearly with impact velocity. The largest gains are associated with a shift to buckle modes composed of 2–3 half sine waves. The loading rates tested within this study are similar to those that are expected when a sandwich core is compressed due to a blast event.  相似文献   

5.
A new hybrid concept for sandwich structures   总被引:1,自引:0,他引:1  
Sandwich structures are considered as optimal designs for carrying bending loads and can be either metal (aluminium faces and honeycomb or metal foam cores) or polymer structures (composite faces with polymer foam cores). In this paper, a new hybrid sandwich structure has been developed by combining most of the advantages of metallic and polymeric materials while avoiding some of their main disadvantages. For this new concept metal sheets are used at the outer surfaces to maximize rigidity while introducing in between lightweight cores adhesively bonded to keep the whole structure together. Furthermore, composite or wood layers may be used as intermediate layers to improve impact resistance. Potential methods for the manufacturing of this new structure are based on compression under vacuum. The results include the study of several panel configurations theoretically based on Finite element analysis and on the modified simplified equations and experimental results in the most representative cases of the study.  相似文献   

6.
A simplified approach is used to study the potential of using a corrugated skin in a sandwich to carry shear loads. Shear carrying capability is a major requirement for ship bottom panels, among other structures. The simplifications in the paper are quite major and in particular the corrugated skin is modeled as a conventional material with a homogenized stiffness. The goal of the paper is to point out some of the potentials as well as limitations of using a corrugated skin to carry shear loads. The major analysis tool was finite elements, although some analytical analyses were also performed. It was found that the introduction of a corrugated skin provided improved shear carrying capability and offered weight savings, particularly for heavily loaded sandwich beams. Alternative methods to increase shear strength were briefly reviewed.  相似文献   

7.
This paper studies the four-point bending response and failure mechanisms of sandwich panels with corrugated steel faces and either plain or fibre-reinforced foamed concrete core. Mechanical properties of both plain and polyvinyl alcohol fibre-reinforced foamed concrete were obtained, which are needed for the design of sandwich panel and numerical modelling. It is found that the fibre-reinforcement largely enhances the mechanical behaviour of foamed concrete and composite sandwich panels. Finite element code Abaqus/Standard was employed to investigate the influence of face/core bonding and fastening on the four-point bending response of the sandwich panels. It was found that face/core bonding plays a crucial role in the structural performance while the influence of fastening is negligible.  相似文献   

8.
The objective of this work is to investigate the dynamic large deflection response of fully clamped metal foam core sandwich beam struck by a low-velocity heavy mass. Analytical solution and ‘bounds’ of dynamic solutions are derived, respectively. Also, finite element analysis is carried out to obtain the numerical solution of the problem. Comparisons of the dynamic, the quasi-static and numerical solutions for the non-dimensional maximum deflection of the sandwich beam with non-dimensional initial kinetic energy of the striker are presented for different cases of mass ratio, impact velocity and location. It is seen that the dynamic solution approaches the quasi-static one as the mass ratio of the striker to the beam is large enough, the quasi-static solution is in good agreement with the numerical results and both solutions lie in the ‘bounds’ of dynamic solutions. The quasi-static and numerical results for the impact force against the maximum deflection of the sandwich beam are obtained. It shows that the quasi-static solution can offer adequate accuracy to predict the low-velocity heavy-mass impact response of fully clamped sandwich beam.  相似文献   

9.
The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam.  相似文献   

10.
The bending strength, stiffness and energy absorption of corrugated sandwich composite structure were investigated to explore novel designs of lightweight load-bearing structures that are capable of energy absorption in transportation vehicles. Key design parameters that were considered include fibre type, corrugation angle, core-sheet thickness, bond length between core and face-sheets, and foam inserts. The results revealed that the hybridization of glass fibres and carbon fibres (50:50) in face-sheets was able to achieve the equivalent specific bending strength as the facet-sheets made entirely of carbon fibre composites. Increasing the corrugation angle and the core sheet thickness improved the specific bending strength of the sandwich structure, while increasing the bond length led to a reduction in the specific bending strength. The hybrid composite coupons with foam insertion showed medium energy absorption, ranging between the glass fibre and the carbon fibre composite coupons, but the highest crush force efficiency among all designs.  相似文献   

11.
This paper presents a new analytical solution for the bending response of a web-core sandwich beam. The beam is a transverse cut from the sandwich plate. The method is based on the plane frame analysis, where the response of the beam is divided into local and global components. The Clebsch’s method is used to calculate the deflection of the face plates. The validation of the plane frame method is carried out with FE-analyses based on the shell element formulation. Also a comparison is made with the method based on homogenized beam. Periodic stress distributions in the face plates are revealed with the plane frame analysis and are supported by the FE-analysis. The existing methods based on homogenized beam are not able to predict these stresses. The plane frame analysis can benefit the development of the theory related to web-core sandwich plate.  相似文献   

12.
Failure of the core in sandwich structures under concentrated loading is of potential concern, and it is difficult to compute the core compressive stress by simple means. Contact loading adds additional complexity, as surface displacements are imposed and the contact zone size and pressure distribution is initially unknown. However contact loading is important as it is widely used in three or four point bend tests to determine failure properties, and is also typically involved in impact loading. The calculation of core compressive stress was addressed in the present work by utilizing an elasticity solution due to Pagano and Srinivas and Rao for transverse loading of layered orthotropic materials. Contact pressure distributions were obtained by systematically varying pressures and comparing the computed surface displacements with the indentor profile. The results show that the pressure distribution for an orthotropic half-space is applicable to sandwich beams over a wide range of variables. A beam-on-elastic-foundation model was found to be useful in correlating the analysis results for core compressive stress.  相似文献   

13.
The compressive strengths and dynamic response of corrugated sandwich plates with unfilled and foam-filled sinusoidal plate cores are investigated. The “effective” compressive strengths of the unfilled and foam-filled sinusoidal plate cores are derived and numerically analyzed. Finite element method is employed to analyze the dynamic response of fully clamped metal sandwich plates with unfilled and foam-filled sinusoidal plate cores subjected to impulsive loading. Moreover, a simplified plastic-string model is developed to analytically predict the large deflection and time responses of the clamped sandwich plates under impulsive loading. One can see a good agreement between the analytical and numerical predictions. It can be seen that the present analytical procedure is efficient and simple to evaluate the dynamic response of corrugated sandwich plates.  相似文献   

14.
In response to the growing interest in replenishable, lightweight, stiff and strong materials, a novel sandwich panel with a hollow core has been manufactured using commercially produced 3-ply veneer. In this paper, the out-of-plane shear behaviour of the novel hollow core is analysed and the expressions for the failure loads are developed. A strength-based optimisation problem is formulated for predicting the optimum values of the panel dimensions that would produce minimum panel weight when subjected to bending. It has been found that the minimum weight, as predicted by the full four-parameter optimisation, is slightly lower than that obtained by using the closed form expressions derived on the basis of simplified three-parameter optimisation. Relationships between the active failure modes are explored. Design maps are shown for a wide range of loading that can be used to calculate the minimum panel weight and the corresponding values of the geometric parameters. The approach developed is general and is equally applicable for sandwich panels with similar hollow cores made of other materials.  相似文献   

15.
Composite sandwich beams, comprising glass–vinylester face sheets and a PVC foam core, have been manufactured and tested quasi-statically. Clamped and simply supported beams were tested in three-point bending in order to investigate the initial collapse modes, the mechanisms that govern the post-yield deformation and parameters that set the ultimate strength of these beams. Initial collapse is by three competing mechanisms: face microbuckling, core shear and indentation. Simple formulae for the initial collapse loads of clamped and simply supported beams along with analytical expressions for the finite deflection behaviour of clamped beams are presented. The simply supported beams display a softening post-yield response, while the clamped beams exhibit hardening behaviour due to membrane stretching of the face sheets. Good agreement is found between the measured, analytical and finite element predictions of the load versus deflection response of the simply supported and clamped beams. Collapse mechanism maps with contours of initial collapse load and energy absorption are plotted. These maps are used to determine the minimum mass designs of sandwich beams comprising woven glass face sheets and a PVC foam core.  相似文献   

16.
In this paper, sandwich plates made from 0.8 mm 2024 T3 aluminium alloy skin sheets and graded polymeric hollow sphere cores (having various density gradients) are studied. The experiments at 45 m/s were performed with an inversed perforation setup using SHPB system. Quasi-static tests using the same clamping system allow for the rate effect investigation. Numerical simulations are performed in order to get the indispensable local information (which is not experimentally available) to better understand the perforation process.  相似文献   

17.
ZrO2 ceramic corrugated core sandwich panels were fabricated using gelcasting technique and pressureless sintering. The nominal density of the as-prepared ZrO2 ceramic corrugated panel was only 2.4 g/cm3 (42.9% of bulk ceramic). Lightweight was realized through this sandwich structured design. The three-point bending strength was measured to be 298.4 MPa. And the specific bending strength was as high as 124.3 (114% higher than bulk ceramic). The compressive strength was 20.2 MPa. High strength was also realized through this sandwich structured design. The stress distribution during three-point bending and compression testing was finally simulated using finite element analysis (FEA) method.  相似文献   

18.
Indentation resistance of sandwich beams   总被引:2,自引:0,他引:2  
High-order sandwich beam theory is used to model the local deformation under the central indentor for sandwich beams loaded under three-point bending. ‘High-order' refers to the non-linear variations of in-plane and vertical displacements through the height of the core which the model incorporates. The analysis is elastic, which is appropriate to describe the beam response up to peak load for the material combination of GFRP skins and Nomex honeycomb core which is the focus of this paper. Reasonable agreement is found between theoretical predictions of the displacement field under the indentor and experimental measurements using a beam with GFRP skins and Nomex honeycomb core. By using the model to consider the way in which different wavelengths of sinusoidal pressure loading on the top skin are transmitted to the core, a spreading length scale λ is introduced. λ, which is a function of the beam material and geometric properties, characterises the length over which a load on the top surface of a beam is spread out by the skin. Calculations of the effect of roller diameter on indentation behaviour illustrate the importance of this length scale. When λ is small compared with the roller radius R, corresponding to a flexible skin, the contact load at the roller-skin interface is transmitted relatively unchanged to the core. Conversely, when λ/R is greater than about 0.25, corresponding to a relatively rigid skin, the load from the roller is spread out by the skin and the pressure in the core is distributed over a length of the order of λ.  相似文献   

19.
介绍了碳纤维/铝蜂窝夹芯结构的Kevlar短纤维界面增韧方法。通过三点弯曲实验和面内压缩实验,对比增韧试件与未增韧试件的载荷位移曲线、破坏模式等特征,发现未增韧试件往往先发生界面分层破坏,继而面板和芯体分别发生局部破坏;而增韧试件通常发生整体破坏。实验数据显示,Kevlar短纤维界面增韧可以使碳纤维/铝蜂窝夹芯板的抗弯强度、压缩强度、能量吸收等力学性能分别至少提高14.06%、55.80%和61.53%。对破坏后界面的SEM观测发现:增韧试件并未发生界面脱粘,而是由于芯体撕裂造成面/芯剥离,揭示了Kevlar短纤维的界面增韧机制。对具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯结构进行有限元建模,并分别对其在三点弯曲和面内压缩载荷下的力学行为进行数值分析,以指导该类夹芯结构的分析与设计。  相似文献   

20.
This paper presents the details of a research program that was conducted to evaluate the two-way bending behavior of 3-D glass fiber reinforced polymer (GFRP) sandwich panels. The panels consist of GFRP skins with a foam core and through-thickness fiber insertions. While the behavior of these panels under one-way bending is relatively well understood the behavior under two-way bending has not yet been investigated. An experimental program was conducted to evaluate the effect of the fiber insertion pattern and the panel thickness on the two-way bending behavior under the effect of a concentrated load. The experimental results were used to verify a non-linear, static finite element model which was used to introduce a simplified method to predict the behavior. The measured and predicted responses indicate that at lower deflections the panel behavior is dominated by plate bending action while for higher deflections membrane action dominates. The finite element analysis was extended to study the effect of different parameters which were not tested in the experimental program. The parametric study indicates that increasing the relative flexural or shear rigidities of the panel alters the behavior towards the plate bending mechanism thereby reducing the percentage of load carried by membrane action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号