共查询到20条相似文献,搜索用时 15 毫秒
1.
Cluster ensembles in collaborative filtering recommendation 总被引:1,自引:0,他引:1
Recommender systems, which recommend items of information that are likely to be of interest to the users, and filter out less favored data items, have been developed. Collaborative filtering is a widely used recommendation technique. It is based on the assumption that people who share the same preferences on some items tend to share the same preferences on other items. Clustering techniques are commonly used for collaborative filtering recommendation. While cluster ensembles have been shown to outperform many single clustering techniques in the literature, the performance of cluster ensembles for recommendation has not been fully examined. Thus, the aim of this paper is to assess the applicability of cluster ensembles to collaborative filtering recommendation. In particular, two well-known clustering techniques (self-organizing maps (SOM) and k-means), and three ensemble methods (the cluster-based similarity partitioning algorithm (CSPA), hypergraph partitioning algorithm (HGPA), and majority voting) are used. The experimental results based on the Movielens dataset show that cluster ensembles can provide better recommendation performance than single clustering techniques in terms of recommendation accuracy and precision. In addition, there are no statistically significant differences between either the three SOM ensembles or the three k-means ensembles. Either the SOM or k-means ensembles could be considered in the future as the baseline collaborative filtering technique. 相似文献
2.
Martín López-Nores Yolanda Blanco-FernándezJosé J. Pazos-Arias Alberto Gil-Solla 《Expert systems with applications》2012,39(8):7451-7457
Recommender systems aim at solving the problem of information overload by selecting items (commercial products, educational assets, TV programs, etc.) that match the consumers’ interests and preferences. Recently, there have been approaches to drive the recommendations by the information stored in electronic health records, for which the traditional strategies applied in online shopping, e-learning, entertainment and other areas have several pitfalls. This paper addresses those problems by introducing a new filtering strategy, centered on the properties that characterize the items and the users. Preliminary experiments with real users have proved that this approach outperforms previous ones in terms of consumers’ satisfaction with the recommended items. The benefits are especially apparent among people with specific health concerns. 相似文献
3.
Ana Belén Barragáns-Martínez Enrique Costa-Montenegro Marta Rey-López Ana Peleteiro 《Information Sciences》2010,180(22):4290-17
With the advent of new cable and satellite services, and the next generation of digital TV systems, people are faced with an unprecedented level of program choice. This often means that viewers receive much more information than they can actually manage, which may lead them to believe that they are missing programs that could likely interest them. In this context, TV program recommendation systems allow us to cope with this problem by automatically matching user’s likes to TV programs and recommending the ones with higher user preference.This paper describes the design, development, and startup of queveo.tv: a Web 2.0 TV program recommendation system. The proposed hybrid approach (which combines content-filtering techniques with those based on collaborative filtering) also provides all typical advantages of any social network, such as supporting communication among users as well as allowing users to add and tag contents, rate and comment the items, etc. To eliminate the most serious limitations of collaborative filtering, we have resorted to a well-known matrix factorization technique in the implementation of the item-based collaborative filtering algorithm, which has shown a good behavior in the TV domain. Every step in the development of this application was taken keeping always in mind the main goal: to simplify as much as possible the user task of selecting what program to watch on TV. 相似文献
4.
Item-to-item collaborative filtering (short for ICF) has been widely used in ecommerce websites due to his interpretability and simplicity in real-time personalized recommendation. The focus of ICF is to calculate the similarity between items. With the rapid development of machine learning in recent years, it takes similarity model instead of cosine similarity and Pearson coefficient to calculate the similarity between items in recommendation. However, the existing similarity models can not sufficient to express the preferences of users for different items. In this work, we propose a novel attention-based item collaborative filtering model(AICF) which adopts three different attention mechanisms to estimate the weights of historical items that users have interacted with. Compared with the state-of-the-art recommendation models, the AICF model with simple attention mechanism Self-Attention can better estimate the weight of historical items on non-sparse data sets. Due to depth models can model complex connection between items, our model with the more complex Transformer achieves superior recommendation performance on sparse data. Extensive experiments on ML-1M and Pinterest-20 show that the proposed model greatly outperforms other novel models in recommendation accuracy and provides users with personalized recommendation list more in line with their interests. 相似文献
5.
《国际计算机数学杂志》2012,89(9):1077-1096
In this paper, we propose two new filtering algorithms which are a combination of user-based and item-based collaborative filtering schemes. The first one, Hybrid-Ib, identifies a reasonably large neighbourhood of similar users and then uses this subset to derive the item-based recommendation model. The second algorithm, Hybrid-CF, starts by locating items similar to the one for which we want a prediction, and then, based on that neighbourhood, it generates its user-based predictions. We start by describing the execution steps of the algorithms and proceed with extended experiments. We conclude that our algorithms are directly comparable to existing filtering approaches, with Hybrid-CF producing favorable or, in the worst case, similar results in all selected evaluation metrics. 相似文献
6.
Collaborative filtering (CF) is a widely-used technique for generating personalized recommendations. CF systems are typically based on a central storage of user profiles, i.e., the ratings given by users to items. Such centralized storage introduces potential privacy breach, since all the user profiles may be accessible by untrusted parties when breaking the access control of the centralized system. Hence, recent studies have focused on enhancing the privacy of CF users by distributing their user profiles across multiple repositories and obfuscating the user profiles to partially hide the actual user ratings. This work combines these two techniques and investigates the unavoidable side effect of data obfuscation: the reduction of the accuracy of the generated CF predictions. The evaluation, which was conducted using three different datasets, shows that considerable parts of the user profiles can be modified without observing a substantial decrease of the CF prediction accuracy. The evaluation also indicates what parts of the user profiles are required for generating accurate CF predictions. In addition, we conducted an exploratory user study that reveals positive attitude of users towards the data obfuscation. 相似文献
7.
In recent years, Collaborative Filtering (CF) has proven to be one of the most successful techniques used in recommendation systems. Since current CF systems estimate the ratings of not-yet-rated items based on other items’ ratings, these CF systems fail to recommend products when users’ preferences are not expressed in numbers. In many practical situations, however, users’ preferences are represented by ranked lists rather than numbers, such as lists of movies ranked according to users’ preferences. Therefore, this study proposes a novel collaborative filtering methodology for product recommendation when the preference of each user is expressed by multiple ranked lists of items. Accordingly, a four-staged methodology is developed to predict the rankings of not-yet-ranked items for the active user. Finally, a series of experiments is performed, and the results indicate that the proposed methodology produces high-quality recommendations. 相似文献
8.
9.
Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations 总被引:2,自引:0,他引:2
Collaborative filtering (CF)-based recommender systems represent a promising solution for the rapidly growing mobile music market. However, in the mobile Web environment, a traditional CF system that uses explicit ratings to collect user preferences has a limitation: mobile customers find it difficult to rate their tastes directly because of poor interfaces and high telecommunication costs. Implicit ratings are more desirable for the mobile Web, but commonly used cardinal (interval, ratio) scales for representing preferences are also unsatisfactory because they may increase estimation errors. In this paper, we propose a CF-based recommendation methodology based on both implicit ratings and less ambitious ordinal scales. A mobile Web usage mining (mWUM) technique is suggested as an implicit rating approach, and a specific consensus model typically used in multi-criteria decision-making (MCDM) is employed to generate an ordinal scale-based customer profile. An experiment with the participation of real mobile Web customers shows that the proposed methodology provides better performance than existing CF algorithms in the mobile Web environment. 相似文献
10.
A collaborative filtering framework based on fuzzy association rules and multiple-level similarity 总被引:6,自引:11,他引:6
Cane Wing-ki Leung Stephen Chi-fai Chan Fu-lai Chung 《Knowledge and Information Systems》2006,10(3):357-381
The rapid development of Internet technologies in recent decades has imposed a heavy information burden on users. This has led to the popularity of recommender systems, which provide advice to users about items they may like to examine. Collaborative Filtering (CF) is the most promising technique in recommender systems, providing personalized recommendations to users based on their previously expressed preferences and those of other similar users. This paper introduces a CF framework based on Fuzzy Association Rules and Multiple-level Similarity (FARAMS). FARAMS extended existing techniques by using fuzzy association rule mining, and takes advantage of product similarities in taxonomies to address data sparseness and nontransitive associations. Experimental results show that FARAMS improves prediction quality, as compared to similar approaches.
Cane Wing-ki Leung is a PhD student in the Department of Computing, The Hong Kong Polytechnic University, where she received her BA degree in Computing in 2003. Her research interests include collaborative filtering, data mining and computer-supported collaborative work.
Stephen Chi-fai Chan is an Associate Professor and Associate Head of the Department of Computing, The Hong Kong Polytechnic University. Dr. Chan received his PhD from the University of Rochester, USA, worked on computer-aided design at Neo-Visuals, Inc. in Toronto, Canada, and researched in computer-integrated manufacturing at the National Research Council of Canada before joining the Hong Kong Polytechnic University in 1993. He is currently working on the development of collaborative Web-based information systems, with applications in education, electronic commerce, and manufacturing.
Fu-lai Chung received his BSc degree from the University of Manitoba, Canada, in 1987, and his MPhil and PhD degrees from the Chinese University of Hong Kong in 1991 and 1995, respectively. He joined the Department of Computing, Hong Kong Polytechnic University in 1994, where he is currently an Associate Professor. He has published widely in the areas of computational intelligence, pattern recognition and recently data mining and multimedia in international journals and conferences and his current research interests include time series data mining, Web data mining, bioinformatics data mining, multimedia content analysis,and new computational intelligence techniques. 相似文献
11.
Neighborhood-based methods have been proposed to satisfy both the performance and accuracy in recommendation systems. It is difficult, however, to satisfy them together because there is a tradeoff between them especially in a big data environment. In this paper, we present a novel method, called a CE method, using the notion of category experts in order to leverage the tradeoff between performance and accuracy. The CE method selects a few users as experts in each category and uses their ratings rather than ordinary neighbors’. In addition, we suggest CES and CEP methods, variants of the CE method, to achieve higher accuracy. The CES method considers the similarity between the active user and category expert in ratings prediction, and the CEP method utilizes the active user’s preference (interest) on each category. Finally, we combine all the approaches to create a CESP method, considering similarity and preference simultaneously. Using real-world datasets from MovieLens and Ciao, we show that our proposal successfully leverages the tradeoff between the performance and accuracy and outperforms existing neighborhood-based recommendation methods in coverage. More specifically, the CESP method provides 5% improved accuracy compared to the item-based method while performing 9 times faster than the user-based method. 相似文献
12.
Chin-Hui Lai Author Vitae Author Vitae 《Journal of Systems and Software》2009,82(12):2023-2037
Knowledge is a critical resource that organizations use to gain and maintain competitive advantages. In the constantly changing business environment, organizations must exploit effective and efficient methods of preserving, sharing and reusing knowledge in order to help knowledge workers find task-relevant information. Hence, an important issue is how to discover and model the knowledge flow (KF) of workers from their historical work records. The objectives of a knowledge flow model are to understand knowledge workers’ task-needs and the ways they reference documents, and then provide adaptive knowledge support. This work proposes hybrid recommendation methods based on the knowledge flow model, which integrates KF mining, sequential rule mining and collaborative filtering techniques to recommend codified knowledge. These KF-based recommendation methods involve two phases: a KF mining phase and a KF-based recommendation phase. The KF mining phase identifies each worker’s knowledge flow by analyzing his/her knowledge referencing behavior (information needs), while the KF-based recommendation phase utilizes the proposed hybrid methods to proactively provide relevant codified knowledge for the worker. Therefore, the proposed methods use workers’ preferences for codified knowledge as well as their knowledge referencing behavior to predict their topics of interest and recommend task-related knowledge. Using data collected from a research institute laboratory, experiments are conducted to evaluate the performance of the proposed hybrid methods and compare them with the traditional CF method. The results of experiments demonstrate that utilizing the document preferences and knowledge referencing behavior of workers can effectively improve the quality of recommendations and facilitate efficient knowledge sharing. 相似文献
13.
《Advanced Engineering Informatics》2015,29(4):830-839
Collaborative filtering is a widely used recommendation technique and many collaborative filtering techniques have been developed, each with its own merits and drawbacks. In this study, we apply an artificial immune network to collaborative filtering for movie recommendation. We propose new formulas in calculating the affinity between an antigen and an antibody and the affinity of an antigen to an immune network. In addition, a modified similarity estimation formula based on the Pearson correlation coefficient is also developed. A series of experiments based on MovieLens and EachMovie datasets are conducted, and the results are very encouraging. 相似文献
14.
Considering the increasing demand of multi-agent systems, the practice of software reuse is essential to the development of such systems. Multi-agent domain engineering is a process for the construction of domain-specific agent-based reusable software artifacts, like domain models, representing the requirements of a family of multi-agent systems in a domain, and frameworks, implementing reusable agent-based design solutions to those requirements. This article describes the domain modeling tasks of the MADEM methodology and a case study on the application of GRAMO, a MADEM technique, for the construction of the domain model of ONTOWUM, specifying the common and variable requirements of a family of Web recommender systems based on usage mining and collaborative filtering. 相似文献
15.
Customers’ purchase behavior may vary over time. Traditional collaborative filtering (CF) methods make recommendations to a target customer based on the purchase behavior of customers whose preferences are similar to those of the target customer; however, the methods do not consider how the customers’ purchase behavior may vary over time. In contrast, the sequential rule-based recommendation method analyzes customers’ purchase behavior over time to extract sequential rules in the form: purchase behavior in previous periods ⇒ purchase behavior in the current period. If a target customer’s purchase behavior history is similar to the conditional part of the rule, then his/her purchase behavior in the current period is deemed to be the consequent part of the rule. Although the sequential rule method considers the sequence of customers’ purchase behavior over time, it does not utilize the target customer’s purchase data for the current period. To resolve the above problems, this work proposes a novel hybrid recommendation method that combines the segmentation-based sequential rule method with the segmentation-based KNN-CF method. The proposed method uses customers’ RFM (Recency, Frequency, and Monetary) values to cluster customers into groups with similar RFM values. For each group of customers, sequential rules are extracted from the purchase sequences of that group to make recommendations. Meanwhile, the segmentation-based KNN-CF method provides recommendations based on the target customer’s purchase data for the current period. Then, the results of the two methods are combined to make final recommendations. Experiment results show that the hybrid method outperforms traditional CF methods. 相似文献
16.
Userrank for item-based collaborative filtering recommendation 总被引:1,自引:0,他引:1
With the recent explosive growth of the Web, recommendation systems have been widely accepted by users. Item-based Collaborative Filtering (CF) is one of the most popular approaches for determining recommendations. A common problem of current item-based CF approaches is that all users have the same weight when computing the item relationships. To improve the quality of recommendations, we incorporate the weight of a user, userrank, into the computation of item similarities and differentials. In this paper, a data model for userrank calculations, a PageRank-based user ranking approach, and a userrank-based item similarities/differentials computing approach are proposed. Finally, the userrank-based approaches improve the recommendation results of the typical Adjusted Cosine and Slope One item-based CF approaches. 相似文献
17.
Miguel Á. García-Cumbreras Arturo Montejo-Ráez Manuel C. Díaz-Galiano 《Expert systems with applications》2013,40(17):6758-6765
This work presents a novel application of Sentiment Analysis in Recommender Systems by categorizing users according to the average polarity of their comments. These categories are used as attributes in Collaborative Filtering algorithms. To test this solution a new corpus of opinions on movies obtained from the Internet Movie Database (IMDb) has been generated, so both ratings and comments are available. The experiments stress the informative value of comments. By applying Sentiment Analysis approaches some Collaborative Filtering algorithms can be improved in rating prediction tasks. The results indicate that we obtain a more reliable prediction considering only the opinion text (RMSE of 1.868), than when apply similarities over the entire user community (RMSE of 2.134) and sentiment analysis can be advantageous to recommender systems. 相似文献
18.
协同过滤是电子商务推荐系统中应用最成功的推荐技术之一,但面临着严峻的用户评分数据稀疏性和推荐精度低等问题。针对数据稀疏性高和单一评分导致的推荐精度低等问题,提出一种基于项目属性评分的协同过滤推荐算法。首先通过均值法或缩放法构造用户-项目属性评分矩阵将单一评分转化为多评分;其次基于每个属性评分矩阵,计算用户间的偏好相似度,得到目标用户的偏好最近邻居集;然后针对每个最近邻居集,在用户-项目评分矩阵上完成对目标用户的初步评分预测;最后,将多个初步预测评分加权求和作为综合评分,完成推荐。在Movie Lens扩展数据集上的实验结果表明,该算法能有效提高推荐精度。 相似文献
19.
A novel model of distributed knowledge recommender system is proposed to facilitate knowledge sharing among collaborative team members. Different from traditional recommender systems in the client-server architecture, our model is oriented to the peer-to-peer (P2P) environment without the centralized control. Among the P2P network of collaborative team members, each peer is deployed with one distributed knowledge recommender, which can supply proper knowledge resources to peers who may need them. This paper investigates the key techniques for implementing the distributed knowledge recommender model. Moreover, a series of simulation-based experiments are conducted by using the data from a real-world collaborative team in an enterprise. The experimental results validate the efficiency of the proposed model. This research paves the way for developing platforms that can share and manage large-scale distributed knowledge resources. This study also provides a new framework for simulating and studying individual or organizational behaviors of knowledge sharing in a collaborative team. 相似文献
20.
在推荐系统中,针对用户的冷启动问题,提出一种融合协同过滤的XGBoost推荐算法。根据基于用户相似度的协同过滤推荐算法进行粗粒度召回,得到部分用户的召回集,使用XGBoost算法对召回集中的项目进行预测。对于存在冷启动问题的用户,直接使用XGBoost算法对候选集中的项目进行预测。该算法采用CCIR2018个性化推荐评测的在线评测数据集,并将推荐结果投放到知乎提供的线上平台进行评测。评测结果表明,该算法可以解决用户的冷启动问题,具有很高的执行效率,准确度高,在线上评测中取得显著的推荐效果。 相似文献