首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
焊接缺陷对铝合金焊接接头疲劳性能的影响   总被引:3,自引:0,他引:3  
测定了Al Mg Si系6061合金两种焊接接头的疲劳性能,介绍了铝合金焊接接头的疲劳特征,分析了焊接接头中缺陷对铝合金焊接接头疲劳性能的影响,认为焊缝中宏观尺度的气孔和未焊透及其分布明显地影响铝合金焊接接头的疲劳性能,当缺陷尺寸足够大且数量较多时,将严重降低焊接接头的疲劳性能。夹杂对铝合金焊接接头疲劳性能也有严重的影响。  相似文献   

2.
The work-hardening/softening behaviour of AZ31B magnesium alloy during high cycle fatigue was investigated. The superficial temperature evolution during fatigue tests was used as a criterion for the different levels of work-hardening/softening. The microstructures under different cycles were observed by transmission electron microscope. Tensile test (with post-fatigue) was conducted to quantify the work-hardening/softening behaviour which showed that high dislocation density after cyclic loading lead to high tensile strength. The temperature evolution of the specimens with different levels of work-hardening/softening during tensile tests is related to the microstructures; the results indicated that the temperature rise of the specimen with high density dislocation was lower. Microstructures after tensile tests showed that high dislocation density after cyclic loading would lead to high twinning density.  相似文献   

3.
TC4钛合金焊接接头疲劳性能试验研究   总被引:1,自引:0,他引:1  
对TC钛合金焊接试样进行了低周疲劳试验,在应变控制试验条件下,得到了焊接接头疲劳裂纹萌生寿命。选取弹性模量的变化间接反映焊接接头中的损伤,对焊接结构疲功损伤变化规律进行了探讨并建立了相应的应变-寿命预测方法,研究结果为航空发动机焊接结构寿命的预测提供了参考依据。  相似文献   

4.
In the present paper constant (CA) and variable amplitude (VA) fatigue testing have been carried out on out-of plane gusset fillet welded high strength steel joints. The joints were welded with conventional weld filler material and martensitic low transformation temperature weld filler, LTT, in order to study the influence of the residual stress on the fatigue strength. Residual stress measurements were carried out close to the weld toe using X-ray diffraction technique in order to study the relaxation due to VA fatigue. The residual stress showed different level of relaxation depending on the VA spectrum loading used. The LTT joints show 40% increase in mean fatigue strength compared to the conventional joints in CA. The LTT joints show 12% increase in mean fatigue strength compared to the conventional joints. The LTT joints show 33% increase in mean fatigue strength in CA compared to VA testing. However, the improvement of the fatigue strength is less significant in variable amplitude testing mainly due to the relaxation of the compressive residual stresses.  相似文献   

5.
18-8奥氏体不锈钢焊接接头晶间腐蚀的评定及控制   总被引:1,自引:0,他引:1  
介绍了18-8奥氏体不锈钢焊接件焊接接头抗晶间腐蚀能力的检验和评定方法,对焊接接头晶间腐蚀的原因进行了分析,阐述了在焊接过程中的主要方面实施的有效控制方法,以提高不锈钢焊件抗晶间腐蚀的能力.  相似文献   

6.
An analytical model based on cumulative damage has been used for predicting the damage evolution in composite materials. The model is verified with experimental data from a carbon/epoxy composite fatigued under tension–tension load. Fatigue tests of specimens have been monitored with an infra-red thermography system. By analysing the temperature of the external surface during the application of cyclic loading, it is possible to evaluate the damage evolution. The model agrees well with the experimental data, and it can be used to predict the evolution of damage in composites.  相似文献   

7.
    
The effect of pre-compression deformation on the low-cycle fatigue properties and cyclic deformation behavior of as-rolled AZ31 alloy was investigated by performing the stress-controlled low-cycle fatigue tests at room temperature. Fatigue properties and cyclic damage process should be closely related to the twins. The present work aimed to investigate the deformation mechanism and fatigue life caused by the introduced {1 0−1 2} twinning–detwinning from the viewpoint of stress amplitude. The results reveal that the twins contribute to the fatigue properties and cyclic damage process of AZ31 alloy. There were noticeable changes in hysteresis loops, microstructures and fatigue lives when the stress amplitude increased from 120 to 150 MPa. The fatigue life of pre-compressed samples was more superior to that of the as-rolled sample under different stress amplitudes, especially under the stress amplitude close to the tensile yield strength of the as-rolled sample.  相似文献   

8.
Electrical resistance acquisition, acoustic emission (AE) monitoring and infrared thermography were employed to evaluate damage evolution of 2D carbon-fiber/SiC-matrix composite under fatigue loading. Damage evolution was discussed on the basis of the calculation results of the modulus and mechanical hysteresis variation. At lower stress levels, the majority of damage was produced in the first few cycles and then the rate of damage accumulation gradually approached a steady value as the cycles proceeded. When the applied stress exceeded the endurance fatigue limit, extensive damage took place and led to failure of the composite. Changes of composite electrical resistance, AE activity and surface temperature had fairly well agreement with the modulus and hysteresis responses. It can be concluded that it is possible to employ these real-time non-destructive evaluation methods as in-situ damage evolution indicators for this kind of composites under fatigue loading.  相似文献   

9.
In this investigation an attempt has been made to establish a criterion to forecast the possible crack initiation region (toe or root) in double fillet welded load carrying cruciform joints and also to know the probable failure mode. Cruciform joints were fabricated from pressure vessel grade (ASTM 517 ‘F’ grade) steel using shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes. Fatigue crack growth experiments were carried out in a mechanical resonance vertical pulsator (SCHENCK 200 kN capacity) with a frequency of 30 Hz under constant amplitude loading (R=0). It was found that the fatigue crack initiation lives (root crack or toe crack) were relatively lower in the joints fabricated by FCAW process than the joints fabricated by SMAW process.  相似文献   

10.
    
Several approaches exist for the fatigue strength assessment of welded joints. In addition to the traditional nominal stress approach, various approaches were developed using a local stress as fatigue parameter. In recent times, the N-SIF based approaches using the notch stress intensity at the weld toe or root have been developed. Based on this, the more practical strain energy density (SED) and the Peak Stress approaches were proposed. This paper reviews the proposed design SN curves of the N-SIF and SED approaches questioning in particular the consideration of misalignment effects, which should be included on the load side of local approaches in order to consider them individually in different types of welded joints. A re-analysis of fatigue tests evaluated for the effective notch stress approach leads to slight changes of the design SN curves and of the radius of the control volume used for averaging the SED at the notches. Further, on purpose fatigue tests of artificially notched specimens show that the fatigue assessment using a single-point fatigue parameter might be problematic because the crack propagation phase, being part of the fatigue life, is strongly affected by the stress distribution along the crack path that may vary considerably between different geometries and loading cases.  相似文献   

11.
    
This article presents the microstructure and mechanical properties of spot weld and weld-bond of 2 mm thick 6061 aluminum alloy sheets. The fracture surfaces of the adhesive joints, spot welds, and weld-bonds were studied under scanning electron microscope (SEM). Optical microscopy was carried out to study the microstructure of the joints and nugget size of resistance spot weld and weld-bond of aluminum alloys. Hardness of the weld nugget and HAZ of the spot weld and weld-bond was studied using microhardness tester. Fatigue properties of the adhesive joints, spot welds, and weld-bonds were studied using constant load ratio 0.5. Further, attempts were made to correlate the mechanical properties of various joint with microstructure and nugget size. It was found that optimal combination of process parameters resulted in significantly better mechanical performance of weld-bond than resistance spot weld.  相似文献   

12.
This paper presents a new method for evaluating the geometric or structural stress in welded constructions. The method is based on the computed stress value 1-mm below the surface in the direction corresponding to the expected crack path. The total stress distribution along the crack path direction is considered to be the sum of the geometric stress caused by the structural geometry change and the non-linear local stress produced by the weld itself. Linear elastic fracture mechanics is used to correlate the total stress based crack propagation life and the local stress based crack propagation life to explain the geometric stress evaluated 1-mm below the surface. Validity of the method is further verified by analyzing fatigue test results for several typical welded joints reported in literature. When compared to the surface extrapolation technique for structural hot spot stress evaluation, the proposed method has the additional advantage in that it is able to account for the size and thickness effect observed in welded joints.  相似文献   

13.
    
The influence of loading direction on the fatigue behavior of rolled AZ31 alloy was investigated by conducting fully reversed stress-controlled fatigue tests along the rolling direction and normal to the rolling plane. Alternating twinning and detwinning behavior during initial cycling was found to cause asymmetric hysteresis loops, resulting in a compressive strain in the rolling direction and a tensile strain normal to the rolling plane. A transition in the dominant deformation mechanism from twinning–detwinning to slip occurs at around five cycles under both conditions due to cyclic hardening, thus making their loops symmetric. The lower twinning stress in tension along the normal direction leads to an increase in fatigue damage by plastic strain, resulting in a lower fatigue resistance than along the rolling direction.  相似文献   

14.
The present paper describes the results of a research programme carried out to assess the fatigue properties of MAG (Metal Active Gas) welded elements, built in Fe510 D1 steel. Tests on both small and large specimens were carried out to evaluate the effects, on fatigue resistance, of the residual stresses produced by the welding process. The joints examined were butt welded and longitudinally welded. Crack propagation tests were also carried out on welded plates. The data available, together with results taken from the literature, allowed us to analyse the fatigue test results on the basis of the methodologies of Fracture Mechanics; by calibrating the initial defects using the results of the tests carried out on small specimens, a good prediction of the fatigue resistance of large specimens was obtained.  相似文献   

15.
In the context of the German joint research project “Applicability of fatigue analysis methods for seam welded components”, fatigue tests were performed by five universities and institutes on welded components, welded parts of larger structures as well as component-like samples of weld details. The sheet thickness t was in the range 1 mm ? t ? 20 mm. The welding parameters for all test coupons and structures tested were chosen according to the industrial production process. Based on the data acquired, nominal, structural and notch stress approaches were analysed with regard to applicability and quality of assessment. The actual weld geometry except the real notch radii was taken into account within the notch stress approach. For the notch radii various values, the reference radii 0.05, 0.3 and 1 mm, were applied.Experimental and numerical results for welded steel components are presented.Approximately equivalent scatter ranges were obtained when applying the various approaches based on the current state of the art. It should be noted that both the nominal and the structural stress approaches are limited in their application compared to the notch stress approach. A comparison of the scatter bands obtained for the various approaches is subject to limitations because it was necessary, in each case, to use different test series as the basis for determining the scatter bands.  相似文献   

16.
    
Fracture toughness of AZ31B magnesium alloy subjected to quasi-static loading was investigated by infrared thermography. The results showed that temperature evolution around the crack propagation path during fracture underwent three stages: initial steady stage, monotonic increase stage and final steady stage. The temperature increase at the beginning of stage II is nearly corresponding to the initiation of unstable crack propagation. And based on this phenomenon, a method applying infrared thermography to estimate fracture toughness of AZ31B magnesium alloy was proposed. Fracture toughness was calculated through infrared thermography, which was in good agreement with the result determined by traditional standard method. Finally, the fracture mechanism was investigated.  相似文献   

17.
    
Modification of spraying fused (MSF) of plasma arc as heat source was used to improve the fatigue performance of welded joint, which both fundamentally reduced stress concentration at weld toe and achieved metallurgical bond between spraying fused coating and welding. The low transformation temperature alloy powder was applied to the method of MSF. After spraying fusion, especially spraying fused joint by low transformation temperature alloy powder, the distribution of residual stress is more difficult to be obtained. Finite element (FE) simulation as an important tool was used to determine the stress field and temperature field of spraying fused joint. Simulated results show that as-welded joint and welded joint spraying fused by conventional nickel base alloy powder (Conventional-joint) present tensile stress. The stress of welded joint spraying fused by low transformation temperature alloy powder (LTT-joint) is compressive stress. Fatigue test results indicated that under the condition of 2 × 106 cycles, the fatigue strength of as-welded joint is 135 MPa, while that of Conventional-joint and LTT-joint is 218 MPa and 235 MPa, respectively. The fatigue strength of Conventional-joint increases by 61.48%, and fatigue strength of LTT-joint increases by 74.07%.  相似文献   

18.
Abstract

Based on the infrared thermography method, experiments are carried out to investigate the evolution of temperature field of the extruded AZ31B magnesium alloy specimens under high cyclic fatigue load. The experimental results show that the superficial temperature of specimen under cyclic fatigue load changes with the number of cycles. According to the characteristics of surface temperature change, we propose a formula to calculate the residual fatigue life using energy approach. The proposed formula to assess the fatigue parameters (fatigue limit, residual fatigue life, fatigue life and S–N curve) achieves good results for AZ31B magnesium alloy. Furthermore, the fatigue limits (ΔσeSN?=?90·3 MPa) derived from the traditional method through 107 cycles were compared with the values predicted by the infrared thermographic method (ΔσeTM?=?87·3 MPa) and the energy approach (Δσ?=?86·2 MPa), and the comparison results of percentage differences are 3·3 and 4·5% respectively.  相似文献   

19.
Plane bending fatigue tests had been conducted to investigate fatigue crack initiation mechanism in coarse-grained magnesium alloy, AZ31, with hexagonal close-packed (hcp) crystallographic structure. The initial crystallographic structure was analyzed by an electron backscatter diffraction (EBSD) method. Subsequently, a fatigue test was periodically terminated and time-series EBSD analyses were performed. Basal slip and primary twin operated predominantly. In a twin band, secondary twin operated, and resulted in the fatigue crack initiation. The crack initiation was strongly affected by Schmid factors in the grains and twin bands.  相似文献   

20.
Lightweight magnesium alloys are increasingly used in automotive and other transportation industries for weight reduction and fuel efficiency improvement. The structural application of magnesium components requires proper welding and fatigue resistance to guarantee their durability and safety. The objective of this investigation was to identify failure mode and estimate fatigue life of ultrasonic spot welded (USWed) lap joints of an AZ31B-H24 magnesium alloy. It was observed that the solid-state USWed joints exhibited a superior fatigue life compared with other welding processes. Fatigue failure mode changed from interfacial failure to transverse-through-thickness crack growth with decreasing cyclic load level, depending on the welding energy. Fatigue crack initiation and propagation occurred from both the notch tip inside the faying surface and the edge of sonotrode indentation-footprints due to the presence of stress concentration. A life prediction model for the spot welded lap joints developed by Newman and Dowling was adopted to estimate the fatigue lives of the USWed magnesium alloy joints. The fatigue life estimation, based on the fatigue crack growth model with the global and local stress intensity factors as a function of kink length and the experimentally determined kink angle, agreed fairly well with the obtained experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号