首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cloud computing and virtualization technology have revolutionized general-purpose computing applications in the past decade. The cloud paradigm offers advantages through reduction of operation costs, server consolidation, flexible system configuration and elastic resource provisioning. However, despite the success of cloud computing for general-purpose computing, existing cloud computing and virtualization technology face tremendous challenges in supporting emerging soft real-time applications such as online video streaming, cloud-based gaming, and telecommunication management. These applications demand real-time performance in open, shared and virtualized computing environments. This paper identifies the technical challenges in supporting real-time applications in the cloud, surveys recent advancement in real-time virtualization and cloud computing technology, and offers research directions to enable cloud-based real-time applications in the future.  相似文献   

2.
As the sizes of IT infrastructure continue to grow, cloud computing is a natural extension of virtualisation technologies that enable scalable management of virtual machines over a plethora of physically connected systems. The so-called virtualisation-based cloud computing paradigm offers a practical approach to green IT/clouds, which emphasise the construction and deployment of scalable, energy-efficient network software applications (NetApp) by virtue of improved utilisation of the underlying resources. The latter is typically achieved through increased sharing of hardware and data in a multi-tenant cloud architecture/environment and, as such, accentuates the critical requirement for enhanced security services as an integrated component of the virtual infrastructure management strategy. This paper analyses the key security challenges faced by contemporary green cloud computing environments, and proposes a virtualisation security assurance architecture, CyberGuarder, which is designed to address several key security problems within the ‘green’ cloud computing context. In particular, CyberGuarder provides three different kinds of services; namely, a virtual machine security service, a virtual network security service and a policy based trust management service. Specifically, the proposed virtual machine security service incorporates a number of new techniques which include (1) a VMM-based integrity measurement approach for NetApp trusted loading, (2) a multi-granularity NetApp isolation mechanism to enable OS user isolation, and (3) a dynamic approach to virtual machine and network isolation for multiple NetApp’s based on energy-efficiency and security requirements. Secondly, a virtual network security service has been developed successfully to provide an adaptive virtual security appliance deployment in a NetApp execution environment, whereby traditional security services such as IDS and firewalls can be encapsulated as VM images and deployed over a virtual security network in accordance with the practical configuration of the virtualised infrastructure. Thirdly, a security service providing policy based trust management is proposed to facilitate access control to the resources pool and a trust federation mechanism to support/optimise task privacy and cost requirements across multiple resource pools. Preliminary studies of these services have been carried out on our iVIC platform, with promising results. As part of our ongoing research in large-scale, energy-efficient/green cloud computing, we are currently developing a virtual laboratory for our campus courses using the virtualisation infrastructure of iVIC, which incorporates the important results and experience of CyberGuarder in a practical context.  相似文献   

3.
Cloud infrastructures consisting of heterogeneous resources are increasingly being utilized for hosting large-scale distributed applications from diverse users with discrete needs. The multifarious cloud applications impose varied demands for computational resources along with multitude of performance implications. Successful hosting of cloud applications necessitates service providers to take into account the heterogeneity existing in the behavior of users, applications and system resources while respecting the user’s agreed Quality of Service (QoS) criteria. In this work, we propose a QoS-Aware Resource Elasticity (QRE) framework that allows service providers to make an assessment of the application behavior and develop mechanisms that enable dynamic scalability of cloud resources hosting the application components. Experimental results conducted on the Amazon EC2 cloud clearly demonstrate the effectiveness of our approach while complying with the agreed QoS attributes of users.  相似文献   

4.
In cloud computing environments in software as a service (SaaS) level, interoperability refers to the ability of SaaS systems on one cloud provider to communicate with SaaS systems on another cloud provider. One of the most important barriers to the adoption of SaaS systems in cloud computing environments is interoperability. A common tactic for enabling interoperability is the use of an interoperability framework or model. During the past few years, in cloud SaaS level, various interoperability frameworks and models have been developed to provide interoperability between systems. The syntactic interoperability of SaaS systems have already been intensively researched. However, not enough consideration has been given to semantic interoperability issues. Achieving semantic interoperability is a challenge within the world of SaaS in cloud computing environments. Therefore, a semantic interoperability framework for SaaS systems in cloud computing environments is needed. We develop a semantic interoperability framework for cloud SaaS systems. The capabilities and value of service oriented architecture for semantic interoperability within cloud SaaS systems have been studied and demonstrated. This paper is accomplished through a number of steps (research methodology). It begins with a study on related works in the literature. Then, problem statement and research objectives are explained. In the next step, semantic interoperability requirements for SaaS systems in cloud computing environments that are needed to support are analyzed. The details of the proposed semantic interoperability framework for SaaS systems in cloud computing environments are presented. It includes the design of the proposed semantic interoperability framework. Finally, the evaluation methods of the semantic interoperability framework are elaborated. In order to evaluate the effectiveness of the proposed semantic interoperability framework for SaaS systems in cloud computing environments, extensive experimentation and statistical analysis have been performed. The experiments and statistical analysis specify that the proposed semantic interoperability framework for cloud SaaS systems is able to establish semantic interoperability between cloud SaaS systems in a more efficient way. It is concluded that using the proposed framework, there is a significant improvement in the effectiveness of semantic interoperability of SaaS systems in cloud computing environments.  相似文献   

5.
智能电网符合当前需求,意义重大。首先简单介绍了云计算和智能电网,并对云计算在智能电网中的应用做了阐述,然后主要对云计算的安全技术进行了分析。  相似文献   

6.
The Cloud computing becomes an innovative computing paradigm, which aims to provide reliable, customized and QoS guaranteed computing infrastructures for users. This paper presents our early experience of Cloud computing based on the Cumulus project for compute centers. In this paper, we give the Cloud computing definition and Cloud computing functionalities. This paper also introduces the Cumulus project with its various aspects, such as design pattern, infrastructure, and middleware. This paper delivers the state-of-the-art for Cloud computing with theoretical definition and practical experience.  相似文献   

7.
In recent years, cloud computing has been one of the most widely discussed topics in the field of Information Technology. Owing to the popularity of services offered by cloud environments, several critical aspects of security have aroused interest in the academic and industrial world, where there is a concern to provide efficient mechanisms to combat a wide range of threats. As is well known, the application of security techniques and methodologies has a direct influence on the performance of the system, since security and performance are two quantities that are inversely proportional. This means that if the service providers fail to manage their computing infrastructure efficiently, the demand for services may not be met with the quality required by clients, including security and performance requirements, and the computational resources may be used inefficiently. The aim of this paper was to define QoS-driven approaches for cloud environments on the basis of the results of a performance evaluation of a service in which different security mechanisms are employed. These mechanisms impose additional overhead on the performance of the service, and to counter this, an attempt was made to change computational resources dynamically and on-the-fly. On the basis of the results, it could be shown that in a cloud environment, it is possible to maintain the performance of the service even with the overhead imposed by the security mechanisms, through an alteration in the virtualized computational resources. However, this change in the amount of resources had a direct effect on the response variables.  相似文献   

8.
Virtualization is a key technology to enable cloud computing. Driver domain based model for network virtualization offers isolation and high levels of flexibility. However, it suffers from poor performance and lacks scalability. In this paper, we evaluate networking performance of virtual machines within Xen. The I/O channel transferring packets between the driver domain and the virtual machines is shown to be the bottleneck. To overcome this limitation, we proposed a packet aggregation based mechanism to transfer packets from the driver domain to the virtual machines. Packet aggregation, combined with an efficient core allocation, allows virtual machines throughput to scale up by 700%, while minimizing both memory and CPU consumption. Besides, aggregation impact on packets delay and jitter remains acceptable. Hence, the proposed I/O virtualization model satisfies infrastructure providers to offer Cloud computing services.  相似文献   

9.
10.
Cloud computing enables many applications of Web services and rekindles the interest of providing ERP services via the Internet. It has the potentials to reshape the way IT services are consumed. Recent research indicates that ERP delivered thru SaaS will outperform the traditional IT offers. However, distributing a service compared to distributing a product is more complicated because of the immateriality, the integration and the one-shot-principle referring to services. This paper defines a CloudERP platform on which enterprise customers can select web services and customize a unique ERP system to meet their specific needs. The CloudERP aims to provide enterprise users with the flexibility of renting an entire ERP service through multiple vendors. This paper also addresses the challenge of composing web services and proposes a web-based solution for automating the ERP service customization process. The proposed service composition method builds on the genetic algorithm concept and incorporates with knowledge of web services extracted from the web service platform with the rough set theory. A system prototype was built on the Google App Engine platform to verify the proposed composition process. Based on experimental results from running the prototype, the composition method works effectively and has great potential for supporting a fully functional CloudERP platform.  相似文献   

11.
Scheduling is essentially a decision-making process that enables resource sharing among a number of activities by determining their execution order on the set of available resources. The emergence of distributed systems brought new challenges on scheduling in computer systems, including clusters, grids, and more recently clouds. On the other hand, the plethora of research makes it hard for both newcomers researchers to understand the relationship among different scheduling problems and strategies proposed in the literature, which hampers the identification of new and relevant research avenues. In this paper we introduce a classification of the scheduling problem in distributed systems by presenting a taxonomy that incorporates recent developments, especially those in cloud computing. We review the scheduling literature to corroborate the taxonomy and analyze the interest in different branches of the proposed taxonomy. Finally, we identify relevant future directions in scheduling for distributed systems.  相似文献   

12.
In this paper two new heuristics, named Min–min-C and Max–min-C, are proposed able to provide near-optimal solutions to the mapping of parallel applications, modeled as Task Interaction Graphs, on computational clouds. The aim of these heuristics is to determine mapping solutions which allow exploiting at best the available cloud resources to execute such applications concurrently with the other cloud services.Differently from their originating Min–min and Max–min models, the two introduced heuristics take also communications into account. Their effectiveness is assessed on a set of artificial mapping problems differing in applications and in node working conditions. The analysis, carried out also by means of statistical tests, reveals the robustness of the two algorithms proposed in coping with the mapping of small- and medium-sized high performance computing applications on non-dedicated cloud nodes.  相似文献   

13.
The evolution of cloud computing over the past few years is potentially one of the major advances in the history of computing. However, if cloud computing is to achieve its potential, there needs to be a clear understanding of the various issues involved, both from the perspectives of the providers and the consumers of the technology. While a lot of research is currently taking place in the technology itself, there is an equally urgent need for understanding the business-related issues surrounding cloud computing. In this article, we identify the strengths, weaknesses, opportunities and threats for the cloud computing industry. We then identify the various issues that will affect the different stakeholders of cloud computing. We also issue a set of recommendations for the practitioners who will provide and manage this technology. For IS researchers, we outline the different areas of research that need attention so that we are in a position to advice the industry in the years to come. Finally, we outline some of the key issues facing governmental agencies who, due to the unique nature of the technology, will have to become intimately involved in the regulation of cloud computing.  相似文献   

14.
Resource sharing between multiple tenants is a key rationale behind the cost effectiveness in the cloud. While this resource sharing greatly helps service providers improve resource utilization and increase profit, it impacts on the service quality (e.g., the performance of consumer applications). In this paper, we address the reconciliation of these conflicting objectives by scheduling service requests with the dynamic creation of service instances. Specifically, our scheduling algorithms attempt to maximize profit within the satisfactory level of service quality specified by the service consumer. Our contributions include (1) the development of a pricing model using processor-sharing for clouds (i.e., queuing delay is embedded in processing time), (2) the application of this pricing model to composite services with dependency consideration, (3) the development of two sets of service request scheduling algorithms, and (4) the development of a prioritization policy for data service aiming to maximize the profit of data service.  相似文献   

15.
In this paper, we investigate the problem of scheduling precedence-constrained parallel applications on heterogeneous computing systems (HCSs) like cloud computing infrastructures. This kind of application was studied and used in many research works. Most of these works propose algorithms to minimize the completion time (makespan) without paying much attention to energy consumption.We propose a new parallel bi-objective hybrid genetic algorithm that takes into account, not only makespan, but also energy consumption. We particularly focus on the island parallel model and the multi-start parallel model. Our new method is based on dynamic voltage scaling (DVS) to minimize energy consumption.In terms of energy consumption, the obtained results show that our approach outperforms previous scheduling methods by a significant margin. In terms of completion time, the obtained schedules are also shorter than those of other algorithms. Furthermore, our study demonstrates the potential of DVS.  相似文献   

16.
阐述了目前校园网存在的网络设备重复投入,网络资源利用率低,网络服务质量不高的问题。提出了基于云计算技术可以在不投入硬件资源的情况下,提高网络资源利用率,优化网络性能,提高网络服务质量。  相似文献   

17.
Cloud computing and Internet of Things have promoted a new logistics service mode, i.e., the cloud logistics mode. This work studies the resource virtualization and service encapsulation of a logistics center, and focuses on the technologies of resource expression and service encapsulation. After the resources of a logistics center are encapsulated in web services, how to find the “best” concrete web service among many is a critically important issue. This work considers service selection as an optimization problem and establishes a Particle Swarm Optimization (PSO)-based web service selection model with quality of service (QoS) constraints. It can be used to address the horizontal adaptation issues from the composite web services. The feasibility and effectiveness of the model are verified by several experiments.  相似文献   

18.
Nowadays Network function virtualization (NFV) has drawn immense attention from many cloud providers because of its benefits. NFV enables networks to virtualize node functions such as firewalls, load balancers, and WAN accelerators, conventionally running on dedicated hardware, and instead implements them as virtual software components on standard servers, switches, and storages. In order to provide NFV resources and meet Service Level Agreement (SLA) conditions, minimize energy consumption and utilize physical resources efficiently, resource allocation in the cloud is an essential task. Since network traffic is changing rapidly, an optimized resource allocation strategy should consider resource auto-scaling property for NFV services. In order to scale cloud resources, we should forecast the NFV workload. Existing forecasting methods are providing poor results for highly volatile and fluctuating time series such as cloud workloads. Therefore, we propose a novel hybrid wavelet time series decomposer and GMDH-ELM ensemble method named Wavelet-GMDH-ELM (WGE) for NFV workload forecasting which predicts and ensembles workload in different time-frequency scales. We evaluate the WGE model with three real cloud workload traces to verify its prediction accuracy and compare it with state of the art methods. The results show the proposed method provides better average prediction accuracy. Especially it improves Mean Absolute Percentage Error (MAPE) at least 8% compared to the rival forecasting methods such as support vector regression (SVR) and Long short term memory (LSTM).  相似文献   

19.
20.
郭棉  李绮琦 《计算机应用》2019,39(12):3590-3596
针对云计算网络延迟较长、能耗过高和边缘服务器计算资源有限的问题,提出了一种提高延迟敏感型物联网(IoT)应用服务质量(QoS)的边缘-云合作的漂移加惩罚计算迁移策略(DPCO)。首先,建立物联网-边缘-云系统模型,对业务模式、计算任务所经历的传输延迟和计算延迟、系统产生的计算能耗和传输能耗等进行数学建模;然后,以系统能耗和任务平均延迟为优化目标,以边缘服务器的队列稳定性为限制条件构建边缘-云合作的计算迁移优化模型;接着,以优化目标为惩罚函数,基于李雅普诺夫稳定性理论推导出计算迁移优化模型的漂移加惩罚函数特性。最后,基于推导结果提出了DPCO计算迁移算法,通过每时隙选择使当前漂移加惩罚函数最小化的计算迁移策略来降低长期的单位时间能耗和缩短系统平均延迟。与轻流雾处理(LFP)、基准边缘计算(EC)、基准云计算(CC)策略相比,DPCO的系统能耗最低,约是CC策略的2/3;任务平均延迟也最小,可减少为CC的1/5。实验结果表明,DPCO能够有效降低边缘-云计算系统的能量消耗,减少计算任务的端到端延迟,满足延迟敏感型IoT应用的QoS要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号