首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This present study investigates experimentally and numerically the crush response and energy absorption performances of auxetic foam-filled square tubes under quasi-static axial loading. Three different structures: empty, conventional and auxetic foam-filled square tubes have been compared and examined with respect to the deformation modes and load–displacement curves. Standard compression tests were conducted on the tubes to evaluate the influence of auxetic foam in the energy absorption of empty tubes. Moreover, results from computer simulation have also been supplemented to further examine the abovementioned effect. It is discovered that the auxetic foam-filled square tube is superior to empty and conventional foam-filled square tubes in terms of all studied crashworthiness indicators.  相似文献   

2.
This study investigated the energy absorption response of triggered and non-triggered woven natural silk/epoxy composite rectangular tubes subjected to an axial quasi-static crushing test. The rectangular composite tubes were prepared by the hand lay-up technique using 12 layers of silk fabric with a thickness of 1.7 mm and tube lengths of 50, 80, and 120 mm. The parameters measured were peak load, energy absorption, and specific energy absorption (SEA). In both triggered and non-triggered tubes, the SEA values decreased with increasing length of the composite specimen. On the contrary, total energy absorption increased with increasing length of the composite specimen. The peak load in triggered specimens is nearly half of that in non-triggered specimens. Deformation morphology shows that the specimens failed in two distinct modes: local buckling and mid-length buckling. The non-triggered composite tubes exhibited catastrophic failure, whereas the triggered composite tubes only exhibited progressive failure.  相似文献   

3.
Polymer composite sandwich structures are promising candidate structures for reducing vehicle mass, thereby improving the fuel economics. Nonetheless, to fully explore this material as the primary structure and energy absorber in vehicles, it is important to understand the energy absorption capability of this material. Hence, in the present work, comprehensive experimental investigation on the response of composite sandwich structures to quasi-static compression has been carried out. The crashworthiness parameters, namely the peak force, absorbed crash energy, specific absorbed energy, average crushing force and crush force efficiency of various types of composite sandwich structures were investigated in a series of edgewise axial compression tests. The tested composite sandwich specimens were fabricated from glass and carbon fiber with epoxy resin. Four distinct modes of failure were observed and recorded. The primary mode of failure observed was progressive crushing with high energy absorption capability. The optimized design in this study had a specific energy absorption capability of 47.1 kJ/kg with a good crush force efficiency of 0.77, higher than conventional metals.  相似文献   

4.
This paper presents the quasi-static crushing performance of nine different geometrical shapes of small-scale glass/polyester composite tubes filled with polyurethane closed-cell foam for use in sacrificial cladding structures. The effect of polyurethane foam on the crushing characteristics and the corresponding energy absorption is addressed for each geometrical shape of the composite tube. Composite tubes with two different thicknesses (1 mm and 2 mm) have been considered to study the influence of polyurethane foam on the crushing performance. From the present study, it was found that the presence of polyurethane foam inside the composite tubes suppressed the circumferential delamination process and fibre fracturing; consequently, it reduced the specific energy absorption of composite tubes. Furthermore, the polyurethane foam attributed to a higher peak crush load for each composite tube. However, the presence of polyurethane foam inside the composite tubes significantly increased the stability of the crushing phenomena especially for the square and hexagonal cross-sectional composite tubes with 1 mm wall thickness. The results from this study are compared with our previous results for composite tubes without polyurethane foam [1].  相似文献   

5.
In this article, some theoretical relations are derived to predict the mean folding force, total absorbed energy per unit of tube length and specific absorbed energy per unit of total mass by the polyurethane foam-filled grooved tubes with circular cross section under the axial compression process. During the folding process, a new theoretical model of deformation is introduced for the polyurethane foam-filler. The theoretical analysis is developed on the basis of the energy method. Some foam-filled grooved specimens were prepared and axially compressed to obtain the experimental diagram of the folding force versus the axial displacement. Comparison of the theoretical predictions with the experimental results showed a good agreement. Then, by considering the interaction effect between the polyurethane foam and the inner wall of grooved tubes, a semi-empirical relation was derived. Predictions along with considering the interaction factor obtained from the semi-empirical relation indicate a better correlation with those of the experiments.  相似文献   

6.
Foam-filled thin-walled tubes are considered to be desirable energy absorbers under axial loading due to their higher energy absorption compared with empty tubes. This paper treats the axial crushing and energy absorption response of foam-filled conical tubes under quasi-static axial loading, using non-linear finite element models. Influence of important parameters such as wall thickness, semi-apical angle and density of foam filler was investigated and the results highlight the advantages of using foam-filled conical tubes as energy absorber. Results also indicate that the crush and energy absorption performances of conical tubes are significantly enhanced by foam filling. The primary outcome of the study is new research information and development of empirical relations which will facilitate the design of foam-filled conical tubes as energy absorbers in impact applications.  相似文献   

7.
This paper examines the effect of mode I interlaminar fracture toughness (GIc) on the specific energy absorption of stitched glass/polyester composite cylindrical shells under axial compression. The laminated composite cylindrical shells used as energy absorbers, absorb large amount of impact energy during collision. Since mode I delamination in the thin wall of axially collapsed shell is one of the major energy absorbing modes, contribution of GIc to specific energy absorption (SEA) of tubes is significant during collision. The GIc values are determined through double cantilever beam (DCB) test with stitched and unstitched planar specimens. The four and six-layered cylindrical tubes of D/t ratios 29.27 and 20, respectively, with GIc values ranging from 1.68 to 8.09 kJ/m2 are prepared by stitching and are subjected to quasi-static axial compression. Increasing GIc up to certain value leads to controlled progressive crushing, which is a good energy absorbing mechanism, beyond which failure is uncontrolled. Cylindrical tubes having GIc up to 6.34 kJ/m2 leads to 40% increase in SEA for four-layered tubes and 6.6% for six-layered tubes comparing with the corresponding unstitched tubes. When the tubes have GIc of 8.09 kJ/m2, four-layered tubes undergo unstable failure, but six-layered tubes undergo stable progressive crushing with 22% increase in SEA. Transition from stable to unstable failure depends upon the thickness of tubes. An analytical model is developed based on energy approach to predetermine the steady state mean crush load of cylindrical composite shells under axial compression. The model results are validated by experimental results, and show good agreement.  相似文献   

8.
Quasi-static and dynamic crushing of empty and foam-filled tubes   总被引:3,自引:0,他引:3  
Metallic foam-filled tubes and their empty counterparts have been tested at quasi-static and dynamic strain rates in order to determine their energy absorption capabilities. Data from the Split-Hopkinson Pressure Bar have been used to generate force vs. displacement curves that are somewhat analogous to pseudo-engineering stress-strain curves. Force balance calculations have also been made. These results indicate that, on an equal weight basis, foam-filled tubes offer greater energy absorption capability than empty tubes at quasi-static strain rates. However, the benefit of foam filling does not appear to be extended to strain rates of the order of 200–500 s–1. Force balance calculations are shown to have potential as a method for monitoring the crushing of metallic foams at high strain rate.  相似文献   

9.
Bending crash tests on empty and foam-filled square aluminum beams have been performed. Furthermore, in order to find more details about crash processes, finite element simulations have been done. In terms of improving crash behavior of the aluminum beams, the crashworthiness optimization procedure has been applied to maximize specific energy absorption of the square beams with the target energy absorption. A comprehensive study about the strengthening effect of foam in the filled beam has been performed and finally the optimization technique has been implemented to find the optimum foam-filled beam that absorbs the same energy as optimum empty tubes with lower weight.  相似文献   

10.
Quasi-static and dynamic axial crushing tests were performed on thin-walled square tubes and spot-welded top-hat sections made of high-strength steel grade DP800. The dynamic tests were conducted at velocities up to 15 m/s with an impacting mass of 600 kg in order to assess the crush behaviour, the deformation force and the energy absorption. Typical collapse modes developed in the sections and the associated energy absorbing characteristics were examined and compared with previous studies on high-strength steel. A significant difference was observed between the quasi-static and the dynamic crushing tests in terms of the deformation force and impact energy absorption. As this difference is attributed to strain-rate and inertia effects, material tensile tests at elevated strain rates have been carried out. A comparison is made with analytical methods and the response was under-predicted. In addition, numerical simulations of the axial crushing of the thin-walled sections were performed and comparisons with the experimental results were satisfactory. The validated numerical model was used to study the energy absorption capacity of thin-walled sections with variations in the yield strength, sheet thickness, flange width and spot-weld spacing. Structural effectiveness differences have been captured through simulations between spot-welded top-hat sections made of mild steel and high-strength steel.  相似文献   

11.
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.  相似文献   

12.
This article attempts to increase the crashworthiness characteristics of energy absorbers. It is found that the effect of the bi-tubular arrangement on the energy absorption and peak force is nonlinear. This nonlinearity is somewhat related to friction but is mostly related to the changing of buckling modes. Therefore, it is possible to reach higher Specific Absorbed Energy (SAE) in the bi-tubular case than with two tubes since the weight is the same in both arrangements while the energy absorption is higher in the bi-tubular case. To exploit this, multi-objective optimization of bi-thin walled cylindrical aluminium tubes under axial impact loading is performed. The absorbed energy and the SAE are considered as the objective functions while the maximum crush load is regarded as a constraint. Finally, the optimal dimensions of tubes are found in order to maximize the SAE and energy absorption for a specified maximum crushing force.  相似文献   

13.
锥形泡沫填充结构结合了泡沫填充结构与锥形结构的优势,具有优异的吸能性和抵抗失稳变形的能力。研究了具有不同横截面的泡沫填充多边形单锥管(FSPTTs)与泡沫填充多边形双锥管(FBPTTs)在四种冲击角度下的耐撞性。采用多准则评估方法(COPRAS)对不同横截面的泡沫填充单锥管与泡沫填充双锥管的综合耐撞性进行了评估。评估表明:综合考虑多种冲击角度时,圆形截面泡沫填充单锥管较其他截面泡沫填充单锥管具有更好的耐撞性;圆形截面泡沫填充双锥管较其他截面泡沫填充双锥管具有更好的耐撞性。最后,针对圆形截面泡沫填充单锥管与圆形截面泡沫填充双锥管,以最大比吸能和最小峰值力为目标,采用非支配遗传算法对这两种结构在四种冲击角度下进行了多目标优化。结果表明:当冲击角度从0°变化到10°时,两种结构的Pareto曲线变化不大,而当冲击角度从10°变化到30°时,冲击角度对Pareto曲线形状和位置有显著影响;在冲击角度为0°和10°时,圆形截面泡沫填充双锥管的耐撞性优于圆形截面泡沫填充单锥管,而在冲击角度为20°和30°时,圆形截面泡沫填充单锥管的耐撞性优于圆形截面泡沫填充双锥管。实际应用中,可以根据工程需要选择合适的结构。  相似文献   

14.
This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.  相似文献   

15.
The effect of geometry on energy absorption capability and load-carrying capacity of natural kenaf fibre reinforced composite hexagonal tubes had been investigated experimentally. A series of experiments were carried out for composite hexagonal tubes with different angles from a range of 40–60° in 5° steps. This range is suitable for obtaining a regular hexagonal shape. Kenaf fibre mat form was used in this work due to several advantages such as low cost, no health risk, light weight and availability. The kenaf density was usage 0.17 g/cm3 with thickness of 4 mm. Results demonstrated that structures failed in few distinct failure modes. Precisely in progressive failure mode and fragmentation failure associated with longitudinal cracks. The composite tube with β = 60° exhibited local buckling failure mode and displayed the highest specific energy absorption capability equal to 9.2 J/g. On the other hand, new crashworthiness parameter has been introduced as catastrophic failure mode indicator (CFMI). Furthermore, typical load–deformation histories were presented and discussed.  相似文献   

16.
L. W. Guo  J. L. Yu  Z. B. Li 《Acta Mechanica》2010,213(3-4):349-358
Quasi-static experiments were performed on empty tubes and aluminum foam-filled single and double tubes to study the effects of different filler arrangements on their three-point bending behavior. The load-carrying capacity and energy absorption of different structures are compared. The results confirm the advantage of the foam-filled structures. In particular, the double tube structure with aluminum foam filler enhances the load-carrying capacity, crashworthiness, and total and specific energy absorptions of the structure, in comparison with the foam-filled single tube. It was also found that increasing the wall thickness of the inner tube improves the performance of the structure within the experimental range, and adhesion between foam and tube has a negative effect.  相似文献   

17.
This paper reports the findings of a research study investigating the energy-absorbing characteristics of polymer foams reinforced with small carbon fibre reinforced epoxy tubes. Initial attention focuses on establishing the influence of tube diameter on the specific energy absorption (SEA) characteristics of the chamfered CFRP tubes. Here, it is shown that the SEA of the tubes increases rapidly with decreasing diameter/thickness ratio, with the highest values being close to 93 kJ/kg. Similar tests were conducted at dynamic rates of strain, where it was observed that the measured values of SEA were lower than the corresponding quasi-static data, possibly due to rate-sensitive effects in the delamination resistance of the composite material. In the next stage of the investigation, the composite tubes were embedded in a range of polymer foams in order to establish the influence of both tube arrangement and foam density on the crush behaviour of these lightweight structures. In addition, a limited number of blast tests have been undertaken on structures based on these core materials. Here, extensive crushing of the composite tubes was again observed, suggesting that these structures should be capable of absorbing significant energy when subjected to this severe loading condition. Finally, the results of these tests are compared with previously-published data from studies on a range of different cores materials. Here, it has been shown that the energy-absorbing characteristics of these systems exceed values associated with other core materials, such as aluminium honeycombs, polymer honeycombs and metal foams.  相似文献   

18.
This study investigated the energy absorption response and load carrying capability of woven natural silk/epoxy–triggered composite rectangular tubes subjected to an axial quasi-static crushing test. The rectangular composite tubes were prepared by hand lay-up technique. The tubes consisted of 12, 24, and 30 layers of natural woven silk/epoxy laminate and were 50, 80, and 120 mm long. The crashworthiness of the tubes was evaluated by measuring the specific energy absorption in quasi-static axial compression. Specific energy absorption was obtained from the load–displacement curve during testing. The failure mode of the tubes was analyzed from high resolution photographs obtained. Overall, the tube with 50 mm length and 30 layers showed the best crashworthiness among the tubes. The failure morphology showed that the specimens failed in two distinct modes: local and mid-length buckling. The triggered composite tubes exhibited progressive failure.  相似文献   

19.
This paper describes compressive tests on foam-filled composite egg-box panels which were carried out to assess their performance as energy absorbers. Material type, number of plies and stacking angle were varied. Stacking sequences of CFRP [0]nT, CFRP [45]nT (n = 3, 4) and GFRP [0/90]S, [±45]S were used for foam-filled egg-box cores. Fracture modes of representative composite egg-box cores without foam, including crack initiation and propagation, were observed and analysed by multiply-interrupted compressive tests using transparent acrylic face plates on both sides of the egg-box core. The concept of premature buckling of the foam-filled egg-box panels is used to explain the small initial stress peak. Finally, the collapse curve of the core was used to estimate energy absorption capacity. It was found that the foam-filled composite egg-box sandwich panels had a good energy absorption capacity with a stable collapse response resembling the ideal energy absorber.  相似文献   

20.
The capability of structures to absorb large amounts of energy is a crucial factor, particularly for structural components of vehicles, in reducing injury in case of collision. In this study, an experimental investigation was conducted to study the crashworthiness of polymeric foam-filled structures to the pultruded square cross-section E-Glass fiber-reinforced polyester composite tube profiles. Quasi-static compression was applied axially to composite tubes to determine the response of the quasi-static load displacement curve during progressive damage. Three pultruded composite tube wall thicknesses at different sizes were examined, and the effects of crushing behavior and failure modes were analyzed and discussed. Experimental results indicated that the foam-filled profile is superior to the non-filled foam composite tube profile in terms of the capacity to absorb specific energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号