首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于掺Yb3+光纤和掺Yb3+晶体的飞秒激光器输出的飞秒激光脉冲具有较高的脉冲能量和平均功率,被广泛应用于科研和工业生产;但受Yb3+增益介质增益带宽的限制,输出脉冲宽度很难小于300 fs。利用飞秒激光脉冲在多层薄板中的自相位调制效应,分别对基于掺Yb3+光纤和掺Yb3+晶体的飞秒激光器输出的飞秒激光脉冲进行非线性压缩。通过优化非线性压缩装置的各项参数,实现了对低能量、窄脉宽和高能量、宽脉宽脉冲的非线性压缩,分别获得了脉冲能量为64μJ、脉冲宽度为42 fs和脉冲能量为315μJ、脉冲宽度为79 fs的飞秒激光脉冲输出,第一级非线性压缩效率均超过80%,整体压缩效率分别为53%和65%。  相似文献   

2.
基于Yb∶YAG单碟片模块设计并搭建了激光再生放大器,实现了重复频率为1 kHz、脉冲能量为107 mJ、脉冲宽度为1.2 ns的近衍射极限激光输出,x的光束质量因子(Mx2)和y方向的光束质量因子(My2)分别为1.07与1.05,光光转换效率为11%。激光中心波长为1031.7 nm,光谱宽度为2.04 nm,该光谱宽度支持将激光的脉宽压缩至735 fs。据我们所知,这是国内首次使用单碟片激光再生放大器实现重复频率为1 kHz、单脉冲能量为107 mJ的激光输出。  相似文献   

3.
利用MOPA激光种子源,结合氙灯泵浦行波放大方法研制了高能量脉宽可调1 064 nm波段激光器。激光器采用电调制脉宽方式控制MOPA光纤激光器脉冲信号的输出,在保证高光束质量的前提下,实现了脉宽8.6~220.9 ns可调的1 064 nm种子激光输出。选用双通放大级设计,利用氙灯泵浦Nd:YAG晶体实现五级行波放大,分析讨论了抑制自激振荡方法和行波放大过程中脉宽变窄的原因。当氙灯注入能量为60 J,重复频率10 Hz时,实现了脉宽调范围为4.2~173.3 ns的稳定1 064 nm激光输出,单脉冲能量最高可达158 mJ。  相似文献   

4.
曹镱  徐佳  刘江  师红星  王璞 《应用激光》2013,33(1):52-57
工作在2μm波段的脉冲掺铥光纤激光器,可望在遥感探测、相干雷达、空间光通信、激光医疗和特种材料加工等领域获得重要应用。目前,利用波长在1.55μm附近的脉冲掺铒光纤激光器作泵浦源的增益开关掺铥光纤激光器是实现全光纤结构纳秒脉冲掺铥光纤激光器的理想方式之一。采用实验研发的纳秒脉冲掺铒激光器作种子源,研制了全光纤MOPA(masteroscillator power amplifier)结构的纳秒脉冲掺铒光纤激光器,输出波长1 547 nm,脉冲频率100 kHz,脉冲宽度50 ns,平均功率1 W,单脉冲能量10μJ。使用该脉冲掺铒光纤激光器抽运掺铥光纤,实现了波长1 963 nm的增益开关脉冲激光输出。该掺铥光纤激光器为全光纤结构,重复频率100 kHz,最小脉宽47 ns,最大单脉冲能量100 nJ。激光输出稳定可靠,更高的单脉冲能量,平均功率和峰值功率可由进一步级联光纤放大器实现。  相似文献   

5.
实验研究了一种基于大模场面积光子晶体光纤飞秒激光技术的紫外飞秒激光源.分析了群速失配下的倍频光和基频光的走离长度,并实验比较了不同长度的BBO晶体的倍频功率和效率.分别采用5 mm和0.18 mm的两块BBO晶体,在Ⅰ类相位匹配条件下,对光子晶体光纤放大器输出的脉宽为110 fs,重复频率50 MHz的1040 nm飞秒激光进行腔外二倍频(SHG)和四倍频(FHG),获得了高功率紫外飞秒激光.在20 W的平均功率抽运下,获得了8.88 W的二倍频绿光输出,转换效率为44.4%.同时获得了656 mW的四倍频260 nm紫外激光,单脉冲能量13 nJ,最高功率时二次谐波(SH)到四次谐波(FH)的转换效率为7.39%.  相似文献   

6.
为了构建一种声光调Q的窄脉宽小型Nd:YVO4激光器,从主动调Q速率方程出发,分析了抽运速率、重复频率、输出镜透过率对脉宽的影响。该激光器采用简单的平平腔设计,LD端面抽运高增益的Nd:YVO4激光晶体,在谐振腔内插入一个微型的声光调Q开关,作用长度约为7mm,谐振腔腔长13mm,输出镜的透过率为70%。结果表明,在抽运功率为4.21W、重复频率20kHz时,获得了单脉冲能量20μJ、脉冲宽度1.65ns、峰值功率为12kW的1064nm激光输出。此结果说明,用微型声光调Q开关来构建短腔获得窄脉宽输出是一种切实可行的方案,且该器件还可以作为大功率激光器的种子源。  相似文献   

7.
激光二极管抽运声光调Q高重复频率532 nm激光器   总被引:15,自引:11,他引:4  
实现了重复频率高达105kHz的紧凑的全固态声光(A-O)调Q532nm腔内倍频激光器。激光器使用Nd:YVO4作为激光晶体,Ⅱ类匹配的KTP为倍频晶体,声光器件材料为熔融石英,由自制的声光驱动器驱动,其最大射频输出功率为7.5W,重复频率1Hz~105kHz可调。使用1W的激光二极管(LD)抽运,50kHz重复频率下,得到平均功率达224mW的532nm脉冲激光稳定平均输出,总光-光转换效率高达22.4%。低重复频率下,可以实现脉宽为17.2ns,峰值功率为470W,单脉冲能量为8.1μJ的稳定运转。给出了平均功率与重复频率关系的一般公式,并提出即使是在四能级系统中,有效储能时间也并不等于上能级寿命,理论计算结果与实验结果吻合得很好。  相似文献   

8.
利用偏硼酸钡(BBO)倍频晶体,实现了1064 nm激光泵浦金刚石拉曼激光器的高重复频率紫外激光脉冲输出。搭建了腔内倍频金刚石拉曼激光器,实现了620 nm激光输出。当1064 nm泵浦光的功率为4.0 W时,620 nm输出激光的功率为550 mW,转换效率约为13.7%。通过BBO晶体腔外倍频,获得了平均功率约为48 mW的310 nm紫外激光脉冲输出,脉冲重复频率为2 kHz,脉冲宽度约为761.8 ps,倍频效率约为8.7%。  相似文献   

9.
介绍了一台2μm波段的被动调Q(PQS)模式Tm∶YAP激光器。该激光器采取直形腔结构,用输出中心波长为792 nm的激光二极管作为泵浦光源,用新型二维材料黑磷制备的可饱和吸收体作为PQS调制器件。实验结果表明:在连续波模式运转下,当泵浦功率为8.8 W时,Tm∶YAP激光器的输出功率为1.0 W,输出中心波长为1994.8 nm,相应的斜率效率为17.3%;在PQS模式运转下,当泵浦功率为8.8 W时,Tm∶YAP激光器的平均输出功率为0.9 W,输出脉冲宽度为1.3μs,重复频率为135.8 kHz;当平均输出功率为0.9 W时,Tm∶YAP激光器的输出中心波长为1986.7 nm,相应的斜率效率为14.2%,光束质量因子Mx2=1.10、My2=1.06。  相似文献   

10.
采用线型腔结构,实现了中心波长为1939.31 nm、脉宽在0~2000μs可调、重复频率在0~2 kHz可调、最大平均输出功率为34.2 W的准连续掺铥光纤激光器,并利用此激光器在体外环境下开展结石消融量随激光脉宽与重复频率的变化规律的研究。结果显示:在相同时间内,当单脉冲能量相近时,增大脉冲重复频率(平均输出功率)有利于提高碎石速率;当平均输出功率接近时,单脉冲能量越大,石块消融量越大。在90 s的碎石时间内,石块经过31.8 W/0.053 J(250μs)、33.1 W/0.11 J(500μs)、33.5 W/0.22 J(1000μs)、34.2 W/0.45 J(2000μs)4组参数激光照射后的消融量分别为0.333,0.480,0.697,0.723 g,结石表面的最高水温分别为30.8,35.5,38.9,41.2℃。  相似文献   

11.
报道了一种采用被动调Q 的高重频窄脉宽固体激光器。激光器通过LD端面泵浦,利用自聚焦透镜对泵浦光进行整形耦合,采用Nd∶Cr4+∶YAG晶体,把激光工作物质与Q开关晶体键合在一起,得到一种小体积,宽温范,抗冲击震动效果强的高重频半导体固体激光器。该激光器的工作重复频率在10 kHz,脉宽3 ns左右,中心波长1064 nm,输出脉冲能量常温状态可达14.2 μJ以上,高温65 ℃状态下可达15.2 μJ以上,出光延时抖动在5 μs以内的激光输出。  相似文献   

12.
王丽莎  孙松松  闫炜  瞿娇娇  王勇 《红外与激光工程》2021,50(7):20200370-1-20200370-5
报道了一种基于主振荡功率放大(Master Oscillator Power Amplifier, MOPA)结构的L波段可切换双波长且频率稳定的高能量单频偏振脉冲光纤激光器,可作为探测大气CO2激光雷达系统的发射光源。该脉冲光纤激光器系统主要由两个单频窄线宽外腔半导体激光器、脉冲调制系统和多级光纤放大器组成。通过控制磁光开关,可以实现1572.018 nm和1572.480 nm双波长自由切换。采用闭环温度控制技术,实现了种子激光器的输出频率和功率锁定。采用数字和模拟声光调制器串联,实现了高达80 dB的通断消光比。通过对光纤施加非均匀应力,从而提高了受激布里渊散射(Stimulated Brillouin Scattering, SBS)阈值。利用普通商用增益光纤及商业化保偏元器件,在波长1572 nm、重复频率10 kHz时,实现平均输出功率1.5 W,脉宽309 ns,峰值功率485 W,单脉冲能量大于150 μJ,信噪比大于25 dB的激光输出。整个激光器系统采用风冷散热且电功耗小于60 W。  相似文献   

13.
LD泵浦Nd:GdVO4晶体LBO三倍频紫外激光器   总被引:12,自引:3,他引:9  
报道了二极管(LD)端面泵浦Nd:GdVO4晶体腔外三倍频紫外激光器。利用声光调Q获得脉宽为25ns、重复频率为20kHz的355nm紫外准连续激光输出。当泵浦功率为16W时,用Ⅰ类相位匹配LBO晶体进行二倍频获得822mW的绿光输出;此时用Ⅱ类相位匹配LBO晶体进行三倍频获得266mw的355nm紫外激光输出,三倍频效率(1064-355nm)达到5.9%,输出功率抖动低于1.7%。  相似文献   

14.
报道了输出532 nm平均功率为63 W的灯抽运声光(AO)调Q腔内KTP倍频Nd∶YAG固体激光器.分析双灯抽运金属镀金腔结构、抽运均匀性以及KTP倍频晶体的冷却均匀性及可靠性,并设计一种可靠性高的倍频晶体冷却装置.激光谐振腔采用L型腔结构,通过对声光调制器频率和倍频晶体温度对输出倍频激光功率影响的实验研究,得到激光器工作的最佳几何腔长为549 mm.在抽运功率为4.9 kW,声光调制频率为4 kHz时,532 nm倍频激光最大输出44 W,脉宽为80 ns;声光调制频率为10 kHz时,532 nm倍频激光最大输出为63 W,脉宽为140 ns,倍频效率为64%,总电-光效率为1.2%,光束质量为M2=11.1.  相似文献   

15.
实现了一种单端光纤耦合的高重复频率、窄脉冲、窄线宽及高效率的主动声光调Q全光纤脉冲光纤激光器。该光纤激光器基于光纤光栅与平面镜组合而成的线性法布里-珀罗(F-P)腔结构,采用激光二极管与(2+1)×1抽运耦合器形成后向抽运,并利用单端光纤耦合声光调制器(AOM)实现了全光纤化结构的脉冲掺镱双包层光纤激光器。调Q声光开关工作在一级方向,反向输出调Q脉冲,重复频率20~100kHz可调。在重复频率50kHz、抽运功率5.7W下系统获得了输出激光功率2.64W、单脉冲能量528μJ、脉宽56ns、峰值功率943W的稳定的高效率、窄线宽的窄脉冲,中心波长在1080nm左右,线宽为0.06nm,光-光转换效率高达46%。  相似文献   

16.
报道了全固态脉冲运转腔外四倍频289.9 nm紫外激光器。首先,基于Nd∶KGW晶体的受激拉曼散射机制,以Nd∶YVO4晶体作为增益介质,结合声光调Q技术,研制了一台1159.31 nm红外拉曼激光器。当二极管阵列的总抽运功率为20 W时,1159.31 nm激光的输出功率为983 m W,脉宽为13.5 ns。依次利用Ⅰ类相位匹配偏硼酸锂(LBO)和偏硼酸钡(BBO)晶体进行腔外二倍频和四倍频,实现了平均功率为108 m W的289.9 nm紫外激光输出,重复频率为10 k Hz,脉冲宽度为8 ns,峰值功率为1.35 k W,四倍频转化效率为11%。测量了紫外激光的输出光斑,分析了平均功率随脉冲频率的变化关系。  相似文献   

17.
激光二极管(LD)抽运的固体激光器(DPSSL)的调Q器件是获得高重复频率、高峰值功率的有效手段之一,随着激光雷达、激光加工业的发展,要求调Q器件向着更高重复频率的方向发展。Nd∶GdVO4以其优异的物理和激光特性,使得它在激光二极管端面抽运固体激光器的声-光(A-O)调Q器件中,即使在很高的调制重复频率下,仍可获得窄脉宽、高峰值功率的脉冲激光输出。理论分析了影响脉冲激光的输出能量和脉宽大小的决定因素,研究了脉宽、平均输出功率及峰值功率随调Q重复频率的变化关系。利用双激光二极管双端抽运Nd∶GdVO4晶体棒,实现了声-光调Q高重复频率窄脉宽1063 nm激光输出。在晶体入射端面总抽运功率约43 W条件下,当重复频率f=10 kHz时,获得脉宽Δt=10.2 ns,单脉冲能量E=0.95 mJ,峰值功率PM=93.1 kW的输出;在重复频率f=100 kHz时,获得Δt=28.1 ns,E=0.10 mJ,PM=3.6 kW的结果。  相似文献   

18.
LD泵浦Cr4+,Nd3+:YAG自调Q腔内倍频激光器研究   总被引:3,自引:3,他引:0  
Cr4 ,Nd3 :YAG晶体的激光特性得到了系统研究.在LD泵浦下,Cr4 ,Nd3 :YAG晶体获得了1.064μm的自调Q激光输出.激光平均输出功率达到3.36W,脉宽65ns,重复频率87kHz,光-光效率为15.3%.加入KTP晶体后实现了自调Q腔内倍频,获得了532nm的绿色脉冲激光输出,平均功率达到1W,脉宽210ns,重复频率47kHz,光-光效率为6%.对自调Q激光及其腔内倍频发现的现象进行了讨论.  相似文献   

19.
大能量窄脉宽高平均功率绿光激光器   总被引:2,自引:0,他引:2  
研制了在大能量窄脉宽情况下实现高平均功率输出的绿光激光系统。利用激光二极管抽运Nd∶YAG晶体,采用RTP晶体电光调Q和主振荡功率放大的功率分摊技术,实现大能量窄脉宽高重复频率532 nm绿光激光输出。输出基频光波长1064 nm,脉冲平均能量213 mJ,工作频率100 Hz,光-光转换效率12%。采用Ⅱ类相位匹配高抗灰迹KTP晶体腔外倍频,输出绿光波长532 nm,脉冲平均能量127 mJ,工作频率100 Hz,脉冲宽度7.2 ns,光束质量20mm.mrad,532 nm插头效率2.1%。  相似文献   

20.
薄片激光器可以实现高峰值功率、高平均功率、高光束质量的激光输出,是高重复频率皮秒泵浦源的关键技术之一。基于Yb∶YAG单薄片激光模块设计并搭建了再生放大系统,连续泵浦下获得了平均功率为40.9 W、重复频率为1 kHz、脉冲宽度为3.4 ns的激光输出,水平方向上的光束质量因子(Mx2)和竖直方向上的光束质量因子(M y2)分别为1.12和1.10。基于腔内光束指向主动控制技术,2 h输出的平均功率稳定性峰谷(PV)值和均方根(RMS)值分别为6.42%和0.56%。在600μs脉冲泵浦情形下,光光效率达16.1%。在10 kHz重复频率下,获得了53.3 W的高平均功率的激光输出,M x2和M y2分别为1.07和1.06。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号