首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface tension of R1243zf, R1234ze(Z), and R1233zd(E) were measured at temperatures from 270 K to 360 K by an experimental apparatus based on the differential capillary rise method. The deviation between the measured surface tension of R134a and R245fa and the calculated surface tension with REFPROP 9.1 (Lemmon et al., 2013) was ±0.13 mN m−1, which is less than the estimated propagated uncertainty in surface tension of ±0.2 mN m−1. Eleven points, thirteen points, and ten points of surface tension data were provided for R1243zf, R1234ze(Z), and R1233zd(E), respectively, in this paper. The measured data and the estimated surface tension using the methods of Miller, 1963, Miqueu et al., 2000, and Di Nicola et al. (2011) agree within the standard deviation of ±0.43 mN m−1. The empirical correlations that represent the measured data within ±0.14 mN m−1 were proposed for each refrigerant.  相似文献   

2.
Flow boiling of a potential refrigerant R32/R1234ze(E) in a horizontal microfin tube of 5.21 mm inner diameter is experimentally investigated. The heat transfer coefficient (HTC) and pressure drop are measured at a saturation temperature of 10 °C, heat fluxes of 10 and 15 kW m?2, and mass velocities from 150 to 400 kg m?2 s?1. The HTC of R1234ze(E) is lower than that of R32. Degradation in the HTC of the R32/R1234ze(E) mixture is significant; the HTC is even lower than that of R1234ze(E). The HTC is minimized at the composition 0.2/0.8 by mass, where the temperature glide and the mass fraction distribution are maximized. A predicting correlation based on Momoki et al. (1995) associated with the correction methods of Thome (1981) to consider the mass transfer resistance and Stephan (1992) to consider the additionally required sensible heat is proposed and validated with the experimental results.  相似文献   

3.
Condensation is usually assumed to begin when the bulk enthalpy reaches the saturated vapor enthalpy, which leads to discontinuity of heat transfer coefficient calculation in modeling. This paper addresses the discontinuity by showing the presence of condensation in desuperheating region when the wall temperature decreases below the saturation temperature at any operating condition. The experiments have been conducted with R134a, R1234ze(E) and R32 for mass fluxes of 100–300 kgm−2 s−1, saturation temperatures of 30°C–50 °C and from x = 0.05 to superheat of 50 °C in a horizontal smooth tube with 6.1 mm inner diameter. R134a is observed to have approximately 10% higher and 20% lower HTC compared to R1234ze(E) and R32 respectively. Cavallini correlation predicted the data within an accuracy of 12% while Kondo-Hrnjak correlation predicted HTC for condensation in de-superheating zone within accuracy of 23%.  相似文献   

4.
Reducing energy consumption by utilizing heat recovery systems has become increasingly important in industry. This paper presents an exploratory assessment of heat pump type heat recovery systems using environmentally friendly refrigerants. The coefficient of performance (COP) of 4 cycle configurations used to raise the temperature of heat media to 160 °C with a waste heat at 80 °C is calculated and compared for refrigerants R717, R365mfc, R1234ze(E), and R1234ze(Z). A multiple-stage “extraction” cycle drastically reduces the throttling loss and exergy loss in the condensers, resulting in the highest COP for R1234ze(Z). A cascade cycle using R1234ze(Z) and R365mfc has a relatively high COP and provides practical benefits. Even under adverse conditions, the primary energy efficiency is greater than 1.3 when the transmission end efficiency of the electric power generation is 0.37. The assessment demonstrated that high-temperature heat pumps are a promising approach for reducing primary energy consumption for industrial applications.  相似文献   

5.
R1234ze(E), trans-1, 3, 3, 3-tetrafluoropropene, is a fluorinated propene isomer which may be a substitute of R134a for refrigeration applications. R1234ze(E) has a much lower GWP100-years than that of R134a. In this paper, the local heat transfer coefficient during condensation of R1234ze(E) is investigated in a single minichannel, horizontally arranged, with hydraulic diameter equal to 0.96 mm. Since the saturation temperature drop directly affects the heat transfer rate, the pressure drop during adiabatic two phase flow of R1234ze(E) is also measured. Predictive models are assessed both for condensation heat transfer and pressure drop. A comparative analysis is carried out among several fluids (R1234ze(E), R32, R134a and R1234yf) starting from experimental data collected at the same conditions and using the Performance Evaluation Criteria (PEC) named Penalty Factor (PF) and Total Temperature Penalization (TTP) to rank the tested refrigerants in forced convective condensation.  相似文献   

6.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HFO1234yf HFC134a are measured on a flat plain, Turbo-B, Turbo-C, and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of 7 °C on small flat horizontal square copper plates (9.53 mm × 9.53 mm) at heat fluxes from 10 kW m−2 to 200 kW m−2 with an interval of 10 kW m−2. Test results show that nucleate boiling HTCs of HFO1234yf on all four surfaces are similar to those of HFC134a at all heat fluxes tested in this study. At heat fluxes below 150 kW m−2, Thermoexcel-E surface shows the highest heat transfer performance and hence is the best surface for the manufacture of the evaporators in refrigeration and air-conditioning equipment. On the other hand, at high heat fluxes above 150 kW m−2, Turbo-B and Turbo-C show better heat transfer performance than Thermoexcel-E and hence are good for electronic cooling applications. Overall, HFO1234yf is a good long term candidate with excellent environmental properties to replace successfully HFC134a from the view point of pool boiling heat transfer. Hence HFO1234yf can be readily applied to the conventional evaporators designed for HFC134a.  相似文献   

7.
Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.  相似文献   

8.
新型制冷剂R1234ze(E)及其混合工质研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
低GWP值制冷剂R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)作为R134a较为理想的替代品而被关注,但其单一成分的热力学性能和传输特性并不理想,在R1234ze(E)中混入R32成分可以有效改善其热力学性能。本文概述了低GWP值工质R1234ze(E)及其与R32混合物的热物性特征、传输特性及系统运行性能方面的研究现状,并与目前常用的制冷工质进行比较分析,指出R1234ze(E)与R32混合工质有望成为新型低GWP值替代工质。  相似文献   

9.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

10.
R1234yf and R1234ze(E) have been proposed as alternatives for R134a in order to work with low GWP refrigerants, but this replacement results generally in a decrease of the performance. For this reason, it is interesting to explore ways to improve the system performance using these refrigerants. In this paper, a comparative study in terms of energy performance of different single stage vapour compression configurations using R1234yf and R1234ze(E) as working fluids has been carried out. The most efficient configuration is the one which uses an expander or an ejector as expansion device. On the other hand, using an internal heat exchanger in a cycle which replaces the expansion valve by an expander or an ejector could produce a detrimental effect on the COP. However, for all the configurations the introduction of an internal heat exchanger produces a significant increment on the cooling capacity.  相似文献   

11.
New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and Wieland-Werke AG (Gewa-B5) were investigated using R-134a and R-236fa as test fluids. The tests were done at saturation temperatures of 5 and 15 °C, mass flow rates from 4 to 35 kg m−2 s−1 and heat fluxes from 15 to 70 kW m−2. A new prediction method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients was obtained and utilized to generate an improved prediction method for bundle boiling and the onset of dryout. Onset of dryout and the simultaneous reduction in heat transfer performance occurred at very high vapour quality on these enhanced tubes in convective bundle boiling. Furthermore, a direct comparison was made between the tubes operating in falling film and convective bundle boiling modes.  相似文献   

12.
In this study, condensation heat transfer coefficients and pressure drops of R-410A are obtained in flattened microfin tubes made from 7.0 mm O.D. round microfin tubes. The test range covers saturation temperature 45 °C, mass flux 100–400 kg m−2 s−1 and quality 0.2–0.8. Results show that the effect of aspect ratio on condensation heat transfer coefficient is dependent on the flow pattern. For annular flow, the heat transfer coefficient increases as aspect ratio increases. For stratified flow, however, the heat transfer coefficient decreases as aspect ratio increases. The pressure drop always increases as aspect ratio increases. Possible reasoning is provided based on the estimated flow pattern in flat microfin tubes. Comparison with existing round microfin tube correlations is made.  相似文献   

13.
The flow boiling heat transfer coefficient of the low-GWP (global warming potential) refrigerant HFO-1234yf inside a smooth small-diameter horizontal tube (inner diameter: 2 mm) was experimentally investigated. The local heat transfer coefficient was measured at heat fluxes of 6-24 kW m−2, mass fluxes of 100-400 kg m−2 s−1, an evaporating temperature of 288.15 K, and an inlet vapor quality of 0-0.25. The results show that the effect of heat flux on the heat transfer was large at low vapor quality, while the effect of mass flux was large at high vapor quality. The heat transfer coefficient of HFO-1234yf was almost the same as that of R-134a. The heat transfer coefficients calculated based on correlations with Saitoh et al. agreed well with the measured values compared to other correlations. The measured pressure drop agreed well with that predicted by the Lockhart-Martinelli correlation.  相似文献   

14.
This study investigated the condensation heat transfer and pressure drop characteristics of refrigerants R134a, R32, R1234ze(E), and R410A in a horizontal multiport tube with rectangular minichannels, in the mass velocity range of 100–400 kg m−2 s−1 and saturation temperature set at 40 and 60 °C. The effect of mass velocity, vapor quality, saturation temperature, refrigerant properties, and hydraulic diameter of rectangular channels on condensation characteristics is clarified. A new correlation is proposed for predicting the frictional pressure drop for condensation flow in minichannels. A heat transfer model for condensation heat transfer in rectangular minichannels is developed considering the flow patterns and effects of vapor shear stress and surface tension. Then, based on this model, a new heat transfer correlation is proposed. The proposed correlations successfully predict the experimental frictional pressure drop and heat transfer coefficients of the test refrigerants in horizontal rectangular minichannels.  相似文献   

15.
This paper presents a model of shell and tube evaporator with micro-fin tubes using R1234yf and R134a. The model developed for this evaporator uses the ε-NTU method to predict the evaporating pressure, the refrigerant outlet enthalpy and the outlet temperature of the secondary fluid. The model accuracy is evaluated using different two-phase flow boiling correlations for micro-fin tubes and comparing predicted and experimental data. The experimental tests were carried out for a wide range of operating conditions using R134a and R1234yf as working fluids. The predicted parameter with maximum deviations, between the predicted and experimental data, is the evaporating pressure. The correlation of Akhavan– Behabadi et al. was used to predict flow boiling heat transfer, with an error on cooling capacity prediction below 5%. Simulations, carried out with this validated model, show that the overall heat transfer coefficient of R1234yf has a maximum decrease of 10% compared with R134a.  相似文献   

16.
R1234ze(E)(1,1,1,3-四氟丙烯)是当下具有较强替代潜能的环保制冷剂之一,本文搭建了溶解度测试实验系统,对R1234ze(E)在两种多元醇脂油中的溶解度进行测试,测试的温度范围为40~80 ℃,压力范围为0.123~0.360 MPa。采用PR状态方程和MHV2混合规则及NRTL活度系数模型对实验结果进行关联计算,得到不同温度下的交互系数及计算值与实验值的平均相对误差。结果表明,R1234ze(E)在两种多元醇脂油中的溶解度均随着温度的升高而降低,且R1234ze(E)在两种多元醇脂油中的平衡压力与溶解度之间存在立方函数关系。在两种多元醇酯油中,计算值与实验值的平均相对误差分别为1.68%和1.11%,可较好的描述R1234ze(E)在两种多元醇酯油中的相平衡行为。  相似文献   

17.
This paper shows experimental results about R1234yf condensation inside a microfin tube with an inner diameter at the fin tip of 3.4 mm. R1234yf is a new environmentally friendly refrigerant, with a Global Warming Potential lower than 1, therefore it matches the new environmental laws. Experimental tests are carried out for mass velocities from 100 to 1000 kg m−2 s−1, vapor qualities from 0.95 to 0.2, at saturation temperature of 30 °C and 40 °C. The experimental results show that heat transfer coefficient increases when both mass velocity and vapor quality increase. Frictional pressure gradient increases with mass velocity at constant vapor quality, whereas at constant mass velocity it increases with vapor quality up to a maximum, after which it slightly decreases. The experimental heat transfer coefficient and pressure drop are also compared against the values predicted by empirical correlations available in the open literature.  相似文献   

18.
在热泵热水器名义工况下,本文建立了热泵系统循环热力学模型,利用EES程序对混合工质R1234ze/HCs及对应的纯工质热泵系统循环性能进行了对比分析。结果表明:R1234ze/R600在质量分数(20/80)和R1234ze/R600a在质量分数(40/60)存在最优配比,对应的最大制热COP_h分别为3. 41和3. 32,而R1234ze/R290则呈现单调下降趋势。R1234ze/R600(20/80)系统的制热COP_h比R1234ze/R600a(40/60)、R1234ze、R290、R600、R600a系统分别高2. 7%、17%、0. 09%、16. 3%和17. 8%,排气温度为76. 9℃,冷凝压力为0. 711 MPa,压比为6. 32,有望成为新型替代工质。  相似文献   

19.
Estimates are provided for R-1234ze(Z) of its: (1) critical temperature, pressure, and density, acentric factor, and ideal gas specific heat at constant pressure, and (2) various thermodynamic and transport properties, which are used to predict the performance potential of R-1234ze(Z) in high-temperature heat pumping applications. In particular, for an idealized cycle, the coefficient of performance and volumetric heating capacity for R-114 are 3.24 and 1667 kW m−3, respectively, and for R-1234ze(Z) are 3.40 and 1645 kW m−3, respectively. The attractiveness of R-1234ze(Z) is confirmed further through heat exchanger simulations. This paper demonstrates that R-1234ze(Z) deserves further consideration as a possible R-114 replacement.  相似文献   

20.
Flow boiling heat transfer coefficients of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube (6 mm I.D., 6 m length) were measured at a refrigerant mass flux of about 360 kg/m2 s varying the evaporating pressure within the range 3–12 bar, with heat fluxes within the range 11–21 kW/m2. The experimental data are discussed in terms of the heat transfer coefficients as a function of the vapour quality. The experimental results clearly show that the heat transfer coefficients of R134a are always higher than those pertaining to R22 (from a minimum of +6 to a maximum of +45%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号