首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nanocrystalline NiAl powders were synthesized by mechanical alloying (MA), and the ultrafine grain NiAl bulk materials were subsequently consolidated by vacuum hot-pressed sintering. The microstructure and mechanical properties of milled powders and bulk materials were characterized. The results reveal that the NiAl powders were synthesized after 1.67 h of milling and the grains of NiAl were refined to 18 nm after 22 h of milling. During milling, the temperature rise caused by MA led to the annealing effect and consequently resulted in the abnormal decrease in microstrain and microhardness. NiAl bulk material with a relative density of 99.4% was prepared after sintering at 1300 °C and its grain size was about 400 nm. Due to fine-grain strengthening, the compressive stress and compressive strain of NiAl bulk material were significantly improved at room temperature.  相似文献   

2.
《Advanced Powder Technology》2014,25(4):1334-1338
An equiatomic CoCrFeNiMnAl high-entropy alloy was synthesized by mechanical alloying, and alloying behaviors, microstructure and annealing behaviors were investigated. It was found that a solid solution with refined microstructure of 20 nm in grain size could be obtained after 30 h milling. As-milled powder transformed into a face-centered cubic phase above 500 °C. The as-milled powder was subsequently consolidated by spark plasma sintering at 800 °C, BCC phase and FCC phase coexisted in the consolidated HEA, which had excellent properties in Vickers hardness of 662 HV and compressive strength of 2142 MPa.  相似文献   

3.
The synthesis and microstructural evolutions of the NiAl-15 wt% (Al2O3–13% TiO2) nanocomposite powders were studied. These nanocomposite powders are used as feedstock materials for thermal spray applications. These powders were prepared using high and low-energy mechanical milling of the Ni, Al powders and Al2O3–13% TiO2 nanoparticle mixtures. High and low-energy ball-milled nanocomposite powders were also sprayed by means of high-velocity oxy fuel (HVOF) and air plasma spraying (APS) techniques respectively. The results showed that the formation of the NiAl intermetallic phase was noticed after 8 h of high-energy ball milling with nanometric grain sizes but in a low-energy ball mill, the powder particles contained only α-Ni solid solution with no trace of the intermetallic phase after 25 h of milling. The crystallite sizes in HVOF coating were in the nanometric range and the coating and feedstock powders showed the same phases. However, under the APS conditions, the coating was composed of the NiAl intermetallic phase in the α-Ni solid solution matrix. In both of the nanocomposite coatings, reinforcing nanoparticles (Al2O3–13% TiO2) were located at the grain boundaries of the coatings and pinned the boundaries, therefore, the grain growth was prohibited during the thermal spraying processes.  相似文献   

4.
Single phase nanocrystalline hydroxyapatite (HAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4 powders in open air at room temperature, for the first time, within 2 h of milling. Nanocrystalline hexagonal single crystals are obtained by sintering of 2 h milled sample at 500 °C. Structural and microstructural properties of as-milled and sintered powders are revealed from both the X-ray line profile analysis and transmission electron microscopy. Shape and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Particle size of HAp powder remains almost invariant up to 10 h of milling and there is no significant growth of nanocrystalline HAp particles after sintering at 500 °C for 3 h. Changes in lattice volume and some primary bond lengths of as-milled and sintered are critically measured, which indicate that lattice imperfections introduced into the HAp lattice during ball milling have been reduced partially after sintering the powder at elevated temperatures. We could achieve ~ 96.7% of theoretical density of HAp within 3 h by sintering the pellet of nanocrystalline powder at a lower temperature of 1000 °C. Vickers microhardness (VHN) of the uni-axially pressed (6.86 MPa) pellet of nanocrystalline HAp is 4.5 GPa at 100 gm load which is close to the VHN of bulk HAp sintered at higher temperature. The strain-hardening index (n) of the sintered pellet is found to be > 2, indicating a further increase in microhardness value at higher load.  相似文献   

5.
Aluminum matrix composites reinforced with nanocrystalline Ni3Al intermetallic particles, were synthesized using powder metallurgy techniques. Nanocrystalline Ni3Al was obtained by mechanical alloying of Ni75–Al25 stoichiometric mixture from elemental powders after 900 ks of milling with a 5 nm grain size average. Mixture powders of aluminum with 0.007, 0.02 and 0.04 volume fractions of Ni3Al intermetallic particles were compacted using two different compaction methods, the cold isostatic press and sintered at 873 K and the shock-compaction technique. Microstructure of shock-compacted composites showed fine particles of a few microns and also coarse particles less than 100 μm homogeneously distributed on the matrix, also the presence of micro-cracks and low porosity. However the nanoscale features of intermetallic was retained. On the other hand, the press and sintered composites showed good densification. The densities of the composites were about 90% and 94% of the theoretical density for the shock-compacted and press-sintered process, respectively. Finally, the results of hardness measurements showed that the nanocrystalline Ni3Al reinforcement improves the hardness of Al matrix for all conditions. The highest hardness was obtained for the Al–4 vol.%Ni3Al shock-compacted composite.  相似文献   

6.
Nanograined Cu–8 at.% Cr composite was produced by a combination of mechanical milling (MM), mechanical alloying (MA) and spark plasma sintering (SPS). Commercial Cu and Cr powders were pre-milled separately by MM. The milled Cu and Cr powders were then mechanically alloyed with as-received Cr and Cu powders respectively. After milling, the powder mixtures were separately subjected to SPS. It was found that pre-milling Cr can efficiently decrease the size of grain and reinforcement, resulting in remarkable strengthening. The grain size of Cu matrix was about 82 nm after SPS. The Vickers hardness, compressive yield strength and compression ratio of the composite were 327 HV, 1049 MPa and 10.4%, respectively. The excellent mechanical properties were primarily attributed to dispersion strengthening of the Cr particles and fine grain strengthening of the Cu matrix. The strong Cu/Cr interface and dissolved Cr atoms can also contribute to strengthening of the composite.  相似文献   

7.
In this paper the formation as well as the stability of Nb3Al intermetallic compounds from pure Nb and Al metallic powders through mechanical alloying (MA) and subsequent annealing were studied. According to this method, the mixture of powders with the proportion of Nb-25 at% Al were milled under an argon gas atmosphere in a high-energy planetary ball mill, at 7, 14, 27 and 41 h, to fabricate disordered nanocrystalline Nb3Al. The solid solution phase transitions of MA powders before and after annealing were characterized using X-ray diffractometry (XRD). The microstructural analysis was performed using scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). The results show that in the early stages of milling, Nb(Al) solid solution was formed with a nanocrystalline structure that is transformed into the amorphous structure by further milling times. Amorphization would appear if the milling time was as long as 27 h. Partially ordered Nb3Al intermetallic could be synthesized by annealing treatment at 850 °C for 7 h at lower milling times. The size of the crystallites after subsequent annealing was kept around 45 nm.  相似文献   

8.
Nanostructured Fe–6P–1.7C powders were obtained by mechanical alloying in a planetary ball mill. Morphological, microstructural and structural changes during the milling process were followed by scanning electron microscopy, X-ray diffraction and 57Fe Mössbauer spectrometry. The crystallite size refinement to the nanometer scale (5–8) nm is accompanied by an increase in the internal strain. The nanocrystalline structure distortion is evidenced by the lattice parameter changes of the milling products. The hexagonal Fe2P phosphide is formed within 6 h of milling, while the tetragonal Fe3P and orthorhombic Fe3C phases appear after 12 h of milling. A mixture of Fe3P phosphide, Fe3C carbide and α-Fe(C, P) solid solution is obtained on further milling time.  相似文献   

9.
Most of multi-component high entropy alloys were designed as equi-atomic or near equi-atomic and were mainly prepared by vacuum arc melting. The present paper reports synthesis of inequi-atomic Co0.5FeNiCrTi0.5 high entropy alloy by mechanical alloying and spark plasma sintering (MA–SPS). Alloying behavior, microstructure and properties of Co0.5FeNiCrTi0.5 alloy are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and instron testing system, respectively. Both BCC and FCC crystal structure phases are observed after MA, while a FCC phase and additional sigma phase are noticed after SPS. Moreover, numerous nanostructured phases are founded in the alloy after consolidated by SPS. The alloy with a density of 99.15% after SPS exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.65 GPa, 2.69 GPa, 10.0% and 846 HV, respectively. The fracture mechanism of this alloy is observed as cleavage fracture and intergranular fracture.  相似文献   

10.
Nanostructured Al 6061–x wt.% TiC (x = 0.5, 1.0, 1.5 and 2.0 wt.%) composites were synthesised by mechanical alloying with a milling time of 30 h. The milled powders were consolidated by cold uniaxial compaction followed by sintering at various temperatures (723, 798 and 873 K). The uniform distribution and dispersion of TiC particles in the Al 6061 matrix was confirmed by characterising these nanocomposite powders by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The mechanical properties, specifically the green compressive strength and hardness, were tested. A maximum hardness of 1180 MPa was obtained for the Al 6061–2 wt.% TiC nanocomposite sintered at 873 K, which was approximately four times higher than that of the Al 6061 microcrystalline material. A maximum green compressive strength of 233 MPa was obtained when 2 wt.% TiC was added. The effect of reinforcement on the densification was studied and reported in terms of the relative density, sinterability, green compressive strength, compressibility and Vickers hardness of the nanocomposites. The compressibility curves of the developed nanocomposite powders were also plotted and investigated using the Heckel, Panelli and Ambrosio Filho and Ge equations.  相似文献   

11.
In this study, alumina-based matrix nanocomposite powders reinforced with Al particles were fabricated and investigated. The sinterability of the prepared nanocomposite powder at different firing temperature was also conducted. Their mechanical properties in terms of hardness and toughness were tested. Alumina and aluminum powder mixtures were milled in a planetary ball mill for various times up to 30 h in order to produce Al2O3–20% Al nanocomposite. The phase composition, morphological and microstructural changes during mechanical milling of the nanocomposite particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) techniques, respectively. The crystallite size and internal strain were evaluated by XRD patterns using Scherrer methods.A uniform distribution of the Al reinforcement in the Al2O3 matrix was successfully obtained after milling the powders. The results revealed that there was no any sign of phase changes during the milling. The crystal size decreased with the prolongation of milling times, while the internal strain increased. A simple model is presented to illustrate the mechanical alloying of a ductile–brittle component system. A competition between the cold welding mechanism and the fracturing mechanism were found during powder milling and finally the above two mechanisms reached an equilibrium. The maximum relative density was obtained at 1500 °C. The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina.  相似文献   

12.
In the present study Ti5Si3–Al2O3 nanocomposite was synthesized by a displacement reaction between Al and TiO2 in ball milling of TiO2, Al and Si powders. The effect of milling time and heat treatment temperatures were also investigated. The structural changes of powder particles during mechanical alloying were investigated by X-ray diffraction (XRD). Morphology and microstructure of powders were characterized by scanning electron microscopy (SEM). It was found that after 10 h of MA, the reaction between Al and TiO2 initiated in a gradual mode and after about 45 h of milling, the reaction was successfully completed. The final product consisted of Ti5Si3 intermetallic compound with a crystallite size of 13 nm and amorphous Al2O3. Heat treatment of this structure at 1050 °C led to the crystallization of Al2O3 and ordering of Ti5Si3. The crystallite size of Ti5Si3 and Al2O3 after annealing at 1050 °C for 1 h remained in nanometer scale. So the final product appeared to be stable upon annealing.  相似文献   

13.
《Advanced Powder Technology》2014,25(6):1793-1799
In the present study, Co-based machining chips (P1) and Co-based atomized alloy (P2) has been processed through planetary ball mill in order to obtain nanostructured materials and also to comprise some their physical and mechanical properties. The processed powders were investigated by X-ray diffraction technique in order to determine several microstructure parameters including phase fractions, the crystallite size and dislocation density. In addition, hardness and morphological changes of the powders were investigated by scanning electron microscopy and microhardness measurements. The results revealed that with increasing milling time, the FCC phase peaks gradually disappeared indicating the FCC to HCP phase transformation. The P1 powder has a lower value of the crystallite size and higher degree of dislocation density and microhardness than that of the P2 powder. The morphological and particle size investigation showed the role of initial HCP phase and chemical composition on the final processed powders. In addition results showed that in the first step of milling the crystallite size for two powders reach to a nanometer size and after 12 h of milling the crystallite size decreases to approximately 27 and 33 nm for P1 and P2 powders, respectively.  相似文献   

14.
Organic-coated aluminum nano-powders were consolidated by spark plasma sintering technique with low initial pressure of 1 MPa and high holding pressure of 300 MPa at different sintering temperature. The effect of sintering temperature on microstructures and mechanical properties of the compact bulks was investigated. The results indicate that both the density and the strain of the nanocrystalline aluminum increase with an increase in sintering temperature. However, the micro-hardness, compressive strength and tensile stress of the compact bulks increase initially and then decrease with increasing sintering temperature. The nanocrystalline aluminum sintered at 773 K has the highest micro-hardness of 3.06 GPa, the best compressive strength of 665 MPa and the supreme tensile stress of 282 MPa. A rapid grain growth of nanocrystalline aluminum sintered at 823 K leads to a decrease in micro-hardness, compressive strength and tensile stress. After annealing, a remarkable increase in strain and a slight rise in strength were obtained due to the relief of the residual stress in nanocrystalline Al and the formation of composite structure.  相似文献   

15.
The formation mechanism of Cu–11.5Al–4Mn alloys by mechanical alloying (MA) of pure elemental powders was investigated. During milling, the powder sampling was conducted at predetermined intervals from 1 h to 96 h. The quantitative phase analyses were done by X-ray diffraction and the particles size and morphology were studied by scanning electron microscopy. Furthermore, the microstructure investigation and phase identification were done by transmission electron microscopy. Concerning the results, the nanocrystalline Cu solid solution were formed at short milling times and, by milling evolution, the austenite-to-martensite (2H) phase transformation occurred. Moreover, the formation of considerable amount of amorphous phase and its partial transformation to crystalline phases during the milling process were revealed. It was also found that, by milling development, the powder morphology changes from lamellar to semi-spherical and their size initially increases, then reduces and afterward re-increases.  相似文献   

16.
《Advanced Powder Technology》2014,25(4):1362-1368
Mechanically alloyed nanocrystalline Al63Ni37 powder with a metastable structure of NiAl phase was mixed with 20, 30 and 40 vol.% of Al powder. The powder mixtures as well as pure powder of Al63Ni37 alloy were consolidated at 600 °C under the pressure of 7.7 GPa. The bulk materials were characterised by structural investigations (X-ray diffraction, light and scanning electron microscopy, energy dispersive spectroscopy), compression and hardness tests and measurements of density and open porosity. During the consolidation, the metastable NiAl phase transformed into the equilibrium Al3Ni2 intermetallic. The mean crystallite size of the Al3Ni2 intermetallic in the bulk materials is below 40 nm. The microstructure of the composite samples consists of Al3Ni2 intermetallic areas surrounded by lamellae-like Al regions. The hardness of the produced Al3Ni2–Al composites is in the range of 5–6.5 GPa (514–663 HV1), while that of the Al3Ni2 intermetallic is 9.18 GPa (936 HV1). The compressive strength of the composites increases with the decrease of Al content, ranging from 567 MPa to 876 MPa. The plastic elongation of the composites was increasing with the increase of Al content, while the Al3Ni2 intermetallic failed in the elastic region.  相似文献   

17.
The Cu-Fe and Cu-Fe-SiC nanocomposite powders were synthesized by a two step mechanical alloying process. A supersaturated solid-solution of Cu-20 wt% Fe was prepared by ball milling of elemental powders up to 5 and 20 h and subsequently the SiC powder was added during additional 5 h milling. The dissolution of Fe into Cu matrix and the morphology of powder particles were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. It was found that the iron peaks in the XRD patterns vanish at the early stages of mechanical alloying process but the dissolution of Fe needs more milling time. Moreover, the crystallite size of the matrix decreases with increasing milling time and the crystallite size reaches a plateau with continued milling. In this regard, the addition of SiC was found to be beneficial in postponing the saturation in crystallite size refinement. Moreover, the effect of SiC on the particle size was found to be significant only if it is added at the right time. It was also found that the silicon carbide and iron particles are present after consolidation and are on the order of nanometer sizes.  相似文献   

18.
Mechanical alloying is a suitable method for producing copper based composites. Cu–TiO2 composite was fabricated using high energy ball milling and conventional consolidation. Ball milling was performed at different milling durations (0–24 h) to investigate the effects of the milling time on the formation and properties of produced nanostructured Cu–TiO2 composites. The amount of the TiO2 in the final composition of the composite assumed to be 0, 1, 3, 5 and 7 wt%. The milled composite powders were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to investigate the effects of the milling time on the formation of the composite and its properties. Also hardness, density and electrical conductivity of the sintered specimen were measured. High energy ball milling causes a high density of defects in the powders. Thus the Cu crystallite size decreases, generally to less than 50 nm. The maximum hardness value (105 HV) of the sintered compacts belongs to Cu–5 wt%TiO2 which has been milled for 12 h.  相似文献   

19.
《Advanced Powder Technology》2014,25(4):1357-1361
Silicide compounds such as NbSi2 have many desirable properties such as high melting point, high resistance to oxidation and suitable electrical conductivity. However, they have limited practical use because of low ductility. To overcome this limit, we produced NbSi2 based nanocomposite containing Alumina second phase by an exothermic reaction between Al and Nb2O5 in mechanical alloying of Al–Nb2O5–Si system. Structural and phase evolution throughout milling were investigated by using X-ray diffraction and microscopy methods. It followed that after 10 h of MA, the reaction between Al and niobium oxide began in a gradual mode and after around 40 h of milling; the reaction was successfully completed. The final product consisted of NbSi2 intermetallic compound and nanocrystalline Al2O3 with a grain size of 15 and 45 nm, respectively. Microhardness and fracture toughness of nanocomposite were also measured which are greater than NbSi2 intermetallic. As the result of this research we showed that high strength together with increased ductility could be gained in nanocomposite compounds.  相似文献   

20.
《Advanced Powder Technology》2014,25(5):1483-1491
Al–Al12(Fe,V)3Si nanocrystalline alloy was fabricated by mechanical alloying (MA) of Al–11.6Fe–1.3V–2.3Si (wt.%) powder mixture followed by a suitable subsequent annealing process. Structural changes of powder particles during the MA were investigated by X-ray diffraction (XRD). Microstructure of powder particles were characterized using scanning electron microscopy (SEM). Differential scanning calorimeter (DSC) was used to study thermal behavior of the as-milled product. A thermodynamic analysis of the process was performed using the extended Miedema model. This analysis showed that in the Al–11.6Fe–1.3V–2.3Si powder mixture, the thermodynamic driving force for solid solution formation is greater than that for amorphous phase formation. XRD results showed that no intermetallic phase is formed by MA alone. Microstructure of the powder after 60 h of MA consisted of a nanostructured Al-based solid solution, with a crystallite size of 19 nm. After annealing of the as-milled powder at 550 °C for 30 min, the Al12(Fe,V)3Si intermetallic phase precipitated in the Al matrix. The final alloy obtained by MA and subsequent annealing had a crystallite size of 49 nm and showed a high microhardness value of 249 HV which is higher than that reported for similar alloy obtained by melt spinning and subsequent milling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号