首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a control problem for a class of uncertain nonlinear systems in which there exists an unknown time-varying delay in the input and lower triangular nonlinearities. Usually, in the existing results, input delays have been coupled with feedforward (or upper triangular) nonlinearities; in other words, the combination of lower triangular nonlinearities and input delay has been rare. Motivated by the existing controller for input-delayed chain of integrators with nonlinearity, we show that the control of input-delayed nonlinear systems with two particular types of lower triangular nonlinearities can be done. As a control solution, we propose a newly designed feedback controller whose main features are its dynamic gain and non-predictor approach. Three examples are given for illustration.  相似文献   

2.
An output feedback regulation problem is considered for a class of high‐order feedforward nonlinear systems with delay in the input under measurement sensitivity. The key features are that the considered systems have uncertain high‐order feedforward nonlinearity and unknown time‐varying delay in the input. Then, the controller is supposed to be engaged where the output feedback information is distorted by measurement sensitivity. Our proposed controller has two gains—fixed and adaptive gains. The fixed gain is first designed to compensate for measurement sensitivity, and the adaptive gain is next utilized to dominate both unknown input delay and uncertain high‐order feedforward nonlinearity. Simulation examples are given to highlight the advantage of our control scheme.  相似文献   

3.
This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.  相似文献   

4.
This paper considers a high-order consensus problem of multi-agent system with feedforward nonlinear and time-varying input delay in a directed network. In order to achieve the consensus, we propose a low gain distributed protocol which can get rid of impacts of feedforward nonlinearity and an arbitrarily bounded input delay on the consensus problem. Moreover, for any upper bound time-varying delay and strongly connected diagraph, the proposed controller can solve the consensus problem of multi-agent systems with feedforward nonlinearity if the designed parameter θ is great than the threshold value. Finally, several numerical simulations are presented to demonstrate the validity of the theoretical results.  相似文献   

5.
In this paper, an output feedback controller is studied to regulate a class of upper triangular nonlinear systems with uncertain time‐varying delays. The key features of our considered system are that there are uncertain time‐varying delays in both states and input and the high‐order nonlinearity is in a more relaxed form over the previous results. Theoretical analysis and numerical example are presented to show the benefits of our controller. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we provide an output feedback solution over one given by Choi and Lim [Systems & Control Letters, 59(6), 374–379 (2010)] under more generalised system set-up. More specifically, we consider a stabilisation problem of a chain of integrators that has nonlinearity and an uncertain delay in the input by output feedback. The nonlinearity is classified into four types. Then, we propose a memoryless output feedback controller which contains a gain-scaling factor to adjust controller gains depending on the given nonlinearity type. Our stability analysis shows that the controlled system has unique stabilisation result associated with each type of nonlinearity. Our result provides a new aspect to the stabilisation problem of nonlinear time-delay systems and broadens the existing control results of time-delay systems. Two examples are given for illustration.  相似文献   

7.
The problem of global adaptive state regulation is investigated via output feedback for uncertain feedforward nonlinear time‐delay systems. Compared with existing results, our control schemes can be applicable to more general nonlinear time‐delay systems because of combining the low‐gain scaling approach with the backstepping method. In particular, we allow that there exist uncertain output function and uncertain growth rate imposed on nonlinear terms. Also, one considers a class of nonlinear systems with main‐axis delay. By the Lyapunov–Krasovskii theorem, delay‐independent controllers are proposed by constructing novel low‐gain observers driven by system input, to regulate the states of original system while all the closed‐loop signals are globally bounded. Furthermore, two examples are given to illustrate the usefulness of our results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
We consider a global regulation problem for almost feedforward nonlinear systems with uncertain time-varying parameters using an adaptive event-triggered controller. The systems we consider are called “almost” feedforward systems because, in addition to the feedforward nonlinearity with the unknown linear growth rate, there is a non-zero input-matching term. Notably, this input-matching term is a non-feedforward term and it cannot be directly canceled due to the presence of input uncertainty and the use of event-triggered control. To solve our considered problem, we propose an adaptive event-triggered controller with multi-triggering conditions and dynamic gain. We show that the closed-loop system is globally regulated and the times between executions are positively lower bounded. Moreover, we show that the positive lower bounds of interexecution times can be enlarged by a control parameter. For a clear illustration, a practical example is given.  相似文献   

9.
The problem of compensation of arbitrary large input delay for nonlinear systems was solved recently with the introduction of the nonlinear predictor feedback. In this paper we solve the problem of compensation of input delay for nonlinear systems with simultaneous input and state delays of arbitrary length. The key challenge, in contrast to the case of only input delay, is that the input delay-free system (on which the design and stability proof of the closed-loop system under predictor feedback are based) is infinite-dimensional. We resolve this challenge and we design the predictor feedback law that compensates the input delay. We prove global asymptotic stability of the closed-loop system using two different techniques—one based on the construction of a Lyapunov functional, and one using estimates on solutions. We present two examples, one of a nonlinear delay system in the feedforward form with input delay, and one of a scalar, linear system with simultaneous input and state delays.  相似文献   

10.
This paper considers the problem of global asymptotic regulation via output feedback for a class of uncertain feedforward nonlinear systems with input and state delays, where the bounds of time delays are unknown. With the help of the high-gain scaling approach and the idea of universal adaptive control, we explicitly construct an adaptive output compensator with a novel positive dynamic gain which compensates simultaneously the unknown delays and the output growth rate with unknown constant. Based on such output compensator, we reduce the conservatism of the restrictive conditions imposed on nonlinearities to generalise the existing results. By the Lyapunov–Krasovskii theorem, a delay-independent controller design scheme is proposed to guarantee that all the closed-loop signals are globally bounded while rendering the states of original system and the estimate states to globally asymptotically converge to zero. Finally, two illustrative examples are given to show the usefulness of the proposed design method.  相似文献   

11.
一类MIMO非线性时滞系统的鲁棒自适应控制   总被引:1,自引:0,他引:1  
王芹  张天平 《控制理论与应用》2009,26(10):1167-1171
针对一类具有非线性输入的MIMO时变时滞系统,基于变结构控制原理,提出了一种稳定自适应控制器设计的新方案.该方案通过使用Lyapunov-Krasovskii(L-K)泛函抵消了因未知时变时滞带来的系统不确定性;进一步,利用Young's不等式和参数自适应估计取消了非线性死区输入模犁和不确定项假设中各种参数均为已知的要求.通过理论分析,证明了闭环控制系统半全局一致终结有界,跟踪误差收敛到零的一个邻域内.  相似文献   

12.
The problem of global asymptotically stabilizing a certain class of uncertain feedforward nonlinear systems is considered. The control law is obtained by nesting saturation functions whose amplitude can be rendered arbitrarily small. With respect to previous works on the subject the design procedure is able to deal with uncertain (possibly time-varying) parameters ranging within the prescribed compact sets which can affect also the linear approximation of the system. The small gain theorem for nonlinear systems which are input to state stable “with restrictions” is shown to be a key tool for designing a state feedback saturated control law.  相似文献   

13.
This paper considers the output feedback control problem for a class of stochastic high‐order feedforward nonlinear systems with time‐varying delay. Compared with existing works, the features of our system include different bounded time‐varying delays, more general high‐order power and homogeneous feedforward growth conditions. Firstly, we use the adding one power integrator technique to construct an output feedback controller without nonlinearities. Then, by introducing a scaling gain into the controller and choosing an appropriate Lyapunov–Krasovskii functional, the closed‐loop system can be rendered globally asymptotically stable in probability. A simulation example is provided to illustrate the effectiveness of the designed controller.  相似文献   

14.
In this paper, a two‐stage control procedure is proposed for stabilization of a class of strict‐feedback systems with unknown constant time delays and nonlinear uncertainties in the input. A nominal controller is first designed to compensate input time delays without considering input nonlinear uncertainties. Extended from backstepping algorithm, input delay compensation is realized by means of predicted states that are computed through integration of cascaded system dynamics, making the nominal closed‐loop system asymptotically stable. Based on the nominal controller presented for the input delay system, a multi‐timescale system is subsequently developed to estimate the unknown input nonlinearity and make the estimate approach the nominal control input as fast as possible. It is proved that the proposed control scheme can make states of the strict‐feedback systems converge to zero and all the signals of the closed‐loop systems are guaranteed to be bounded in the presence of input time delays and nonlinear uncertainties. Simulation verification is carried out to illuminate the effectiveness of the proposed control approach.  相似文献   

15.
In this paper, we propose a new state feedback controller using dynamic gain for input-delayed systems with high-order nonlinearity terms in both feedforward and non-feedforward forms. The controller design is based on a reduction method to remove the input delay and a gain scaling technique involving appropriate powers of high-order nonlinearity. As a result, more generalized systems containing feedforward and nonfeedforward terms with an input delay are regulated when the proposed power order condition of the nonlinear function is satisfied. An example is given to show the generality of our result over existing results.  相似文献   

16.
This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.  相似文献   

17.
研究带有不确定性拓扑的双积分系统在有时滞的情况下的一致性问题,通过线性矩阵不等式的方法,得到一致性的充分条件。本文最大的贡献是考虑双积分系统,在有不确定性信息和时变时滞的情况下,找出控制协议使其一致。最大合适的时变时滞和不确定性可以由线性矩阵不等式得到。最后给出仿真,证明定理的有效性。  相似文献   

18.
研究在含有控制时滞与测量时滞的系统在高速通讯网络下最优扰动抑制问题. 首先建立在高速通讯网络下含有控制时滞与测量时滞系统的离散化数学模型, 利用模型转换将时滞系统转化为形式上的无时滞系统. 然后通过求解离散Riccati方程和Stein方程设计含有状态反馈、扰动前馈和控制记忆项的最优控制律, 前馈项和控制记忆项分别补偿了扰动和控制时滞对系统性能的影响. 通过构造降维扰动状态观测器, 设计了含扰动前馈、输出反馈及 控制记忆项的动态控制律, 解决了前馈补偿器的物理不可实现问题. 仿真实例验证了所设计的最优控制律的有效性.  相似文献   

19.
This paper considers the problem of robust H control for uncertain discrete systems with time-varying delays. The system under consideration is subject to time-varying norm-bounded parameter uncertainties in both the state and measured output matrices. Attention is focused on the design of a full-order exponential stable dynamic output feedback controller which guarantees the exponential stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed level for all admissible uncertainties. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of this problem is presented, which is dependent on the size of the delay. When this LMI is feasible, the explicit expression of the desired output feedback controller is also given. Finally, an example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

20.
The consensus problem of feedforward nonlinear systems under an undirected network with a time-varying communication delay is studied. In order to solve this problem, new consensus controller with an additional design parameter that can eliminate the effect of a feedforward nonlinearity and a time-varying communication delay on the consensus problem is proposed. Also, it is proved that if an upper bound of time-varying delay is known, the proposed consensus controller can always solve the consensus problem of multi-agent systems even in the presence of feedforward nonlinearity and an arbitrarily large communication delay. A numerical example is given to illustrate the validness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号