首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tensile and fatigue crack growth tests of 2205 duplex stainless steel (DSS) were performed in laboratory air, gaseous hydrogen at 0.2 MPa and saturated H2S solution. The longitudinal specimen showed a lesser degradation of tensile properties than the transverse ones in saturated H2S solution. The orientation of specimens with respect to rolling direction had little influence on the fatigue crack growth rate (FCGR) of the alloy in air. Furthermore, 2205 duplex stainless steel was susceptible to hydrogen‐enhanced fatigue crack growth. Transmission electron micrographs, in addition to X‐ray diffraction, revealed that the strain‐induced austenite to martensite transformation occurred near the crack surface within a rather narrow depth. Fatigue fractography of the specimens tested in air showed mainly transgranular fatigue fracture with a small amount of flat facet fracture. Furthermore, extensive quasi‐cleavage fracture of 2205 duplex stainless steel was associated with the hydrogen‐enhanced crack growth.  相似文献   

2.
Abstract

The effects of partial substitution of tungsten for molybdenum on the microstructure and impact properties in 22Cr–5Ni–3Mo (wt-%) duplex stainless steel (DSS) have been investigated following aging heat treatments in the temperature range 600–1000°C. During aging the intermetallic σ and χ phases were precipitated, and the impact toughness was significantly decreased with an increase in the σ phase content. The χ phase had been precipitated on the α/γ boundary in the early stages of aging. Ferrite and χ phases in tungsten substituted duplex stainless steel contain a large amount of tungsten, and their decomposition rates are much lower compared with those in steel containing only molybdenum. Consequently, the precipitation of the σ phase is retarded in tungsten substituted DSSs, which results in high impact toughness. However, after aging for a long time, the α and χ phases transformed to the σ and austenite phases in the tungsten substituted steels, and the steels showed low impact toughness.  相似文献   

3.
Sheet metal forming is cost-effective manufacturing process and hold a significant key position in fabrication works. Welding being a popular technique the industries primarily prefer for joining of sheet metal formed parts. The inherent material properties changes at the weld metal and heat affected zone post welding process, hence the impact and changes on mechanical strength aspects need to be studied. The current study focuses on influence of plasma arc welding on formability of 1.6 mm thick duplex stainless steel 2205 sheet using Erichsen cupping test by gauging the height of the cup formed. The performed tests such as uniaxial tensile, microhardness showed better mechanical properties and decrease in formability noted from Erichsen cupping test for weld metal compared to base metal. Finite element analysis of Erichsen cupping test is conducted using ABAQUS software and results are matched with experimental outcomes for validation. The comparison shows that a deviation of less than 5 % is noticed between actual and predicted formability index values. Microstructure examination reveals that, equiaxed grains at the weld center and columnar grains at sides typically formed in the weld metal region. The decrease in formability of weld blank compared to base blank is attributed to an increase in ferrite content. This is supported by amount of ferrite content measured in weld metal is 55 % and base metal is 52 %. The scanning electron micrographs (base and weld blank) reveal the mode of failure is ductile.  相似文献   

4.
In this study, static strain ageing behavior of commercially available and solution heat treated duplex stainless steel was investigated and the effect of static strain ageing on the mechanical properties was also determined in detail. Some of as-received duplex stainless steel test specimens were pre-strained in tension by 5% and then aged at 100 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C for 30 min in furnace. Some of duplex stainless steel test specimens were solution heat treated at 1050 °C for 30 min, water quenched and then pre-strained for 5% in tension shortly after the solution heat treatment.In order to identify the effect of static strain ageing on the mechanical properties, the tensile strength, the change in the strength due to ageing (ΔY), elongation fracture and hardness were determined. The test results showed that the mechanical properties were affected by static strain ageing mechanism which was applied at different temperatures for same time interval.  相似文献   

5.
The passive behavior of 2205 duplex stainless steel (DSS) and its individual phases (α-phase, γ-phase) in neutral 3.5% NaCl solution was investigated by various electrochemical methods. The results indicated that galvanic effect between α and γ phases cannot deteriorate local corrosion, but favors the enhancement of the passive film. Under the galvanic effect, the diffusion of the dissolved passive cations would be promoted in a short distance between α and γ zones, leading to modifications of the chemical composition and semiconductive property of the passive film and therefore the enhancement of the corrosion resistance of DSS 2205.  相似文献   

6.
Abstract

The reduced corrosion fatigue performance of a heat treated grade of duplex SAF 2205 stainless steel has been quantified using Wöhler rotating bending fatigue machines. The reduction in fatigue performance has been related to elemental profiles around intergranular and intragranular precipitates and grain boundary segregation measured using EDAX analysis and scanning transmission electron microscopy.  相似文献   

7.
8.
High temperature behavior of 2205 duplex stainless steel was studied by considering behavior of each constituent phase. The specimens were subjected to hot compression tests at temperatures of 800–1100 °C and strain rates ranging from 0.001 to 1 s−1 at intervals of an order of magnitude. The flow stress analysis showed that hot working empirical constants are different at low and high temperatures. The strain rate sensitivity m was determined and found to change from 0.12 to 0.21 for a temperature rise from 800 °C to 1100 °C. The apparent activation energy Q was calculated as 554 and 310 kJ/mol for low and high temperature, respectively. The validity of constitutive equation of hyperbolic sine function was studied and stress exponent, n, was assessed to be 4.2. Assuming the hyperbolic sine function for determination of strain rate and application of the rule of mixture, the interaction coefficients of δ-ferrite, P, and austenite, R, were estimated at different hot working regimes. It was found that the interaction coefficients are functions of Zener–Hollomon parameter Z and obey the formulas P = 1.4Z−0.08 and R = 0.76Z0.005. Therefore, it was concluded that at low Z values δ-ferrite almost accommodates strain and dynamic recovery is the prominent restoration process which may even inhibit dynamic recrystallization in austenite. Otherwise, at high Z, austenite controls the deformation mechanism of material and dynamic recrystallization leads in finer microstructure.  相似文献   

9.
Abstract

The plasma transferred arc technique has been used for the production of high nitrogen surfaces on 2205 duplex stainless steel substrates. Nitrogen was introduced into the melt using Ar+5%N2 and Ar+10%N2 gas mixtures. The nitrided surfaces are austenitic–ferritic and have a thickness of 1140±35 and 1650±31 μm respectively. The change of the austenite crystal lattice, due to the absorption of nitrogen, was determined by X-ray diffraction. Pin on disc tests showed that the wear resistance was increased. The corrosion in 3·5%NaCl and 1 N H2SO4 aqueous solutions was also slightly improved. Significant improvement was, however, observed in the pitting corrosion resistance of the nitrided surfaces, with regard to the 2205 duplex stainless steel substrate.  相似文献   

10.
Processing map on a wrought 2205 duplex stainless steel under hot compression conditions has been developed based on the dynamic material model theories in the range 1223–1473 K and 0.01–10 s−1. The various domains in the map corresponding to different deformation characteristics have been discussed in combination of microstructural observations. The results show that the power dissipation efficiency (η) depends strongly on the dynamic recrystallization (DRX) of austenite which plays a dominant role in microstructural evolution, while the ferrite phase mainly continues to exhibit relatively well-developed dynamic recovery (DRV) at large strain. The optimum hot working domain of wrought 2205 duplex stainless steel is obtained to be in the temperature range 1373–1473 K and at strain rate of 0.01 s−1, with peak efficiency 50% occurring at about 1423 K, in which more uniform microstructure is developed due to the occurrence of complete DRX of austenite. The unstable hot working regimes are predicted by Prasad instability criterion, in good agreement with the macro-and microstructural observations. As predicted, flow instability, which are manifested as twinning, bands of flow localization and the absence of DRX in austenite are observed at lower temperatures and higher strain rates (1223–1273 K and 1–10 s−1); in other cases, wedge cracking is responsible for instability phenomena observed at the temperature range 1373–1423 K and strain rate of 10 s−1.  相似文献   

11.
This paper presents the results of SSC (Sulfide Stress Cracking) investigations of duplex stainless steel 2205 resistance to cracking failure under the combined action of tensile stress and aqueous environments containing hydrogen sulfide according to the NACE Standard TM0177-96. The investigations were carried out on 9 test pieces that were loaded with a tensile stress ranging from 1.02 × the yield stress (YS) to 0.72 × YS. The tests were terminated either when the test specimen failed or after 720 h (30 days) – whichever occurred first – in accordance with the standard requirements. Only two of the specimens examined, one loaded with 1.02 × YS and the second one with 0.72 × YS, failed during the test. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of such parameters as linear roughness index RL, fractal dimension DF and overlap index OL.  相似文献   

12.
The use of duplex stainless steel represents one possible efficient alternative of austenitic grade and an interesting resources for its high performance against stress corrosion cracking. Unfortunately such material shows some limitations in their use: for instance the sheets or plates of duplex stainless steels present anomalous and poor formability for plastic deformation processes. Such problems are mainly related to an unsuitable normal anisotropy coefficient, which might cause the “necking” and “earing” phenomena, especially during hot rolling. The study deals with the comparison of symmetric and asymmetric rolling technique on stainless steel duplex 2205 specimens. All the experiments were carried out using a laboratory mill, properly equipped with an individual engine for each rolling cylinder. The experimental parameters considered include three different pre-heating temperatures and two asymmetry ratios, while the reduction level is maintained constant for both rolling configurations. Moreover, the study involves also the analysis of the influence of solubilization quenching and the SEM, SEM-EBSD investigation dedicated to establish the microstructure modifications. The specimens were also studied through tensile tests to determine the influence of the rolling techniques on the mechanical properties of the product, focusing on the definition of the average anisotropy coefficient. The results of the experimental trials allow to conclude that the use of asymmetric rolling process induces an improved formability and increases duplex 2205 tensile properties.  相似文献   

13.
Hot deformation characteristics of 2205 duplex stainless steel were analyzed by performing hot compression tests at a temperature range of 950–1200 °C and a strain rate of 0.001–1 s−1. Flow stress was modeled by the constitutive equation of hyperbolic sine function. The constants of n, A, α, and the apparent activation energy were determined at different strains. They were then fitted by polynomial equations. Using the hyperbolic sine function and the relations derived between constants and strain flow curves were successfully modeled. Microstructural evolutions were characterized using optical microscopy and electron back scattered diffraction techniques. The results showed that dynamic recovery in ferrite is accelerated at higher temperatures followed by transformation to continuous dynamic recrystallization. Dynamic recrystallization in austenite was postponed by the accommodation of strain in ferrite and very few internal boundaries in austenite. At high strain rates, dynamic recovery in ferrite and dynamic recrystallization in austenite are very slow. Consequently, the total recrystallized fraction decreases. At low temperatures this situation may cause flow instabilities. At low strain rates, softening processes dominate in austenite and ferrite whereas at intermediate strain rates, the formation of substructures is observed in both phases.  相似文献   

14.
15.
Stainless steels have shown great potential in the application of offshore oil and gas industry.However,the internal surface of stainless steel pipeline may simultaneously suffer erosion from the fluid media inside the pipeline and the damage of hydrogen that is generated from the external activities such as cathodic protection.The synergistic effect of erosion and hydrogen on the properties of passive film on 2205 duplex stainless steel was studied for the first time in a loop system coupled with a hydrogen-charging cell.The components,protective performance and semiconductive structure as well as properties of the passive film under different conditions were investigated using in-situ electrochemical techniques,surface characterization and computational fluid dynamics simulation.The results show that the combination of erosion and hydrogen could greatly thin the passive film,furthermore,the Fe3+/Fe2+ratio and O2-/OH-ratio in the passive film also decrease dramatically under such a condition.Therefore,the hydration degree of the passive film greatly increases,resulting in an increase in active sites and a decrease in the stability of the passive film.Erosion could destroy the passive film through the impact of sand particles and accelerate the mass transfer process of electrochemical reaction.While hydrogen can not only enhance the charge transfer process,but also make the passive film highly defective.Under the combination of erosion and hydrogen condition,erosion could enhance the hydrogen damage and simultaneously hydrogen could also enhance erosion.Therefore,the synergistic effect of erosion and hydrogen could dramatically change the passive film component,decrease the protective performance,and increase the susceptibility of pitting corrosion of 2205 stainless steel in Cl-containing environment.  相似文献   

16.
The influence of thermal cycling without any applied load on the microstructural features of a forged stainless ferritic-austenitic duplex steel was investigated by transmission electron microscopy. The steel was examined in uncycled and cycled conditions. Thermal cycling between 20 °C and 900 °C did not alter the volume fractions and the anisotropic grain structure of ferrite and austenite. On the other hand, thermal cycling had a strong influence on the dislocation arrangement in both phases. Three different types of precipitate were identified in the uncycled material. The amount of these particles was increased by thermal cycling. There was a strong evidence for the precipitation of ′ particles in the cycled material.  相似文献   

17.
In view of the requirement of large cold rolling deformation and bonding pressure in the conventional superplastic diffusion bonding of 2205 duplex stainless steel, a novel method of introducing thermal cycling into the process was proposed. During the thermal cycling process, due to the change of temperature, surface chemical activity of 2205 duplex stainless steel was improved, activity of atoms and grain boundaries were improved, and the recrystallized grains were refined. The shear bond strength of joint prepared in the mode of thermal cycling using specimens with the cold roll reduction of 60% was 15 MPa higher than that of conventional bonding using specimens with the cold roll reduction of 85%. Compared to the shear bond strength of 430 MPa under the specific pressure of 10 MPa after conventional bonding, shear bond strength of 623 MPa was obtained under the condition of Tmax = 1000 °C, Tmin = 900 °C, cycle number of heating and cooling N = 3, and specific pressure P = 5 MPa.  相似文献   

18.
The hot working behaviour of duplex stainless steels has been studied in the literature mainly through hot torsion or hot compression tests. The aim of this paper is to investigate the hot deformation behaviour of a duplex stainless steel type 2205 (F51) through hot tension tests, which are easier to carry out and can offer some additional information about the maximum sustainable strain in tension before starting of irreversible damage. In fact, even under the uniaxial compressive action of a forging press, tensile stresses may develop in some zones of the forged product. These zones become most critical and the knowledge of the limiting conditions are important. Three different test temperatures were selected, namely 900, 1000, and 1100 °C. The hot working behaviour was characterised by fitting the mean flow stress, strain rate, and temperature relationship with the hyperbolic sine function defined by Sellars and Tegart. An activation energy Q equal to 430 kJ/mol was obtained for plastic straining at high temperature. It corresponds to values, obtained with hot torsion or hot compression tests, reported in the literature where a large variation in activation energy is also found for duplex stainless steels. It was explained by considering the intrinsic two-phase nature of the investigated steel. The ductility in the different hot working conditions was characterised by the true strain at the onset of damage formation under prevailing tensile stress conditions. The role of the microstructure as well as of damage formation during deformation on the shape of the flow stress curves was analyzed.  相似文献   

19.
The joint of dissimilar metals between 2205 duplex stainless steel and 16MnR low alloy high strength steel are welded by tungsten inert gas arc welding (GTAW) and shielded metal arc welding (SMAW) respectively. The microstructures of welded joints are investigated using scanning electron microscope, optical microscope and transmission electron microscopy respectively. The relationship between mechanical properties, corrosion resistance and microstructure of welded joints is evaluated. Results indicate that there are a decarburized layer and an unmixed zone close to the fusion line. It is also indicated that, austenite and acicular ferrite structures distribute uniformly in the weld metal, which is advantageous for better toughness and ductility of joints. Mechanical properties of joints welded by the two kinds of welding technology are satisfied. However, the corrosion resistance of the weldment produced by GTAW is superior to that by SMAW in chloride solution. Based on the present work, it is concluded that GTAW is the suitable welding procedure for joining dissimilar metals between 2205 duplex stainless steel and 16MnR.  相似文献   

20.
In this research dynamic strength is analyzed for the first time in a lean duplex stainless steel (LDS) uncharged and charged with hydrogen. In particular, the dynamic yield stress (Hugoniot elastic limit, HEL) and the dynamic tensile strength (spall strength) of LDS are studied. We also investigate the deformation mechanism of the LDS using metallurgical analysis. LDS was chosen since it has a mixed structure of ferrite (BCC, α) and austenite (FCC, γ), which allows an attractive combination of high strength and ductility. The dynamic loading was produced by accelerating an LDS impactor in a gas gun into an LDS target (uniaxial plate impact experiments). Data collection was performed by optical diagnostics through the velocity interferometer for any reflector device. The impact produces conditions of high pressure and high strain rate (~105 s?1), which can be comparable to explosions during extreme conditions of failure. In addition, investigations of hydrogen interaction with both crystal lattices were performed by means of X-ray diffraction (XRD) measurements. Several assessments can be made based on the results of this study. Using XRD analysis, it will be shown that even after hydrogen desorption some hydrogen remained trapped in the austenitic phase causing a small lattice expansion. After impact, a brittle spall was seen, which occurred through cavitation of cracks along both phases’ grain boundaries. Hydrogen increases the dynamic yield strength and when hydrogen content is sufficiently high it will also lead to higher spall strength. The relation between microstructure and dynamic strength of the LDS in the presence of hydrogen is discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号