共查询到11条相似文献,搜索用时 31 毫秒
1.
The analogy between heat and mass transfer (using the naphthalene sublimation technique to measure the mass transfer coefficient) was used to investigate the heat transfer capabilities of various two-row plate fin and tube heat exchanger configurations. Average transfer coefficients were determined from measurements of the mass transferred in an analogical system consisting of a pair of naphthalene plates and an array of spacer discs. The analogical system modelled a typical heat exchanger flow passage. Special attention was given to the effect of fin spacing on heat transfer capabilities. A physical interpretation of the experimental data has been given and new conclusions have been drawn. The pressure drop of the heat exchanger configurations has also been investigated. 相似文献
2.
Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch 总被引:1,自引:0,他引:1
The objective of this study is to provide experimental data that can be used in the optimal design of flat plate finned-tube heat exchangers with large fin pitch. In this study, 22 heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The reduction in the heat transfer coefficient of the four-row heat exchanger coil was approximately 10% as the fin pitch decreased from 15.0 to 7.5 mm over the Reynolds number range of 500–900 that was calculated based on the tube diameter. For all fin pitches, the heat transfer coefficient decreased as the number of tube row increased from 1 to 4. The staggered tube alignment improved heat transfer performance more than 10% compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of 3.8 and 6.2% for the inline and staggered tube alignment, respectively. 相似文献
3.
The paper presents the results of thermal and flow analyses of the boiling process in vertical tubes with heat transfer enhancing inserts. Tests were performed for three different geometrical shapes of the inserts: a spiral tape with a core rod, a rib insert and a spring insert. Experimental measurements were performed for R507, R410A and R407C refrigerants at low heat flux. The obtained results indicate the increase ratio of heat transfer and flow resistance coefficients in tubes with inserts, as opposed to a plain one. Finally, the paper presents the dimensionless relationships which enable the calculation of heat transfer coefficients and pressure drops during boiling in vertical tubes with the studied heat transfer enhancing inserts. 相似文献
4.
Desiccant coated heat exchanger provides a promising option for desiccant cooling system, since it can handle sensible load and latent load simultaneously within one component. It is fabricated by coating desiccant material on the surface of conventional fin-tube heat exchanger. In order to enhance the performance of conventional silica gel coated heat exchanger (SGCHE), a novel composite silica gel coated heat exchanger (CCHE) is proposed and fabricated. An experimental setup is built to test and compare the dynamic performance of SGCHE and CCHE. Influences of main operation parameters including water temperatures and inlet air conditions on system performance are analyzed in terms of average dehumidification capacity (Davg) and thermal coefficient of performance (COPth). Optimization of cycle switch modes is also discussed. Experimental results show that CCHE has better dehumidification performance compared with SGCHE. In addition, pre-cooling before dehumidification process is found to be advantageous to both Davg and COPth. 相似文献
5.
Experimental and numerical analysis of heat transfer and fluid flow in the compact heat exchanger has been done in this paper. In an open circuit wind tunnel, developed on purpose for this investigation, the measurement of working media temperatures and mass flow rates for heat exchanger with microchannel coil has been accomplished. In accordance with the heat exchangers used for experiments, numerical 3D simulation of adequate geometry shapes has been done. With utilization of air/water side numerical simulation, more detailed results have been achieved in relation to the simulation that assumes constant temperature or constant heat flux on the pipe wall. Good agreement between experimentally measured and numerically calculated results has been accomplished. The influence of different microchannel shapes on heat transfer effectiveness and pressure drop has been studied numerically. Comparison of results has been made accompanied by the discussion and final conclusions. 相似文献
6.
Effects of fin spacing on the temperature distribution in a finned tube adsorber bed are studied to decrease the temperature gradient inside the adsorber bed and minimize the adsorber bed to adsorbent mass ratio (AAMR) for vehicle air conditioning applications. Finned tube adsorber beds have shown higher specific cooling power and coefficient of performance, and low AAMR among the existing adsorber beds. A single-adsorber bed ACS with interchangeable heat exchangers is built and equipped with hermetic type T thermocouples. Two copper heat exchangers with 6.35 mm (1/4″) and 9.5 mm (3/8″) fin spacing are custom-built and packed with 2–4 mm silica gel beads. The experimental results show that by decreasing the fin spacing from 9.5 mm to 6.35 mm, the temperature difference between the fin and adsorbent reduces by 4.6 °C under the cycle time of 600 s and an adsorption to desorption time ratio (ADTR) of one. A greater reduction in the temperature gradient inside the adsorber bed with smaller fin spacing is observed for short cycle time operation, e.g. 600 s, compared to long cycle time operation, e.g. 1400 s. Finally, simultaneous comparison of the temperature gradient between the fins and AAMR against fin spacing indicates that the optimum fin spacing for a finned tube heat exchanger packed with 2–4 mm silica gel beads is about 6 mm. 相似文献
7.
A flow boiling heat transfer model for horizontal tubes is proposed for CO2 with entrained polyalkylene glycol (PAG) type lubricating oil in the pre-dryout region. A general power law-type model with a power number of 3 is used together with the average thermodynamic properties of the CO2–oil mixture. A convective enhancement factor (F) is recommended according to the relationship between the Lockhart–Martinelli parameter and the ratio αtp/αl, which was obtained based on previous experimental results for CO2 and oil. A new suppression factor (S) is introduced that comprises a suppression term for forced convection and oil concentration term for bubble generation. A comparison of six correlations showed that the proposed correlation can depict the influence of the mass and heat fluxes on both nucleate and convection boiling reasonably well. 相似文献
8.
The entrainment performance and the shock wave structures in a three-dimensional ejector were investigated by Computational Fluid Dynamics (CFD) and Schlieren flow visualization. The ejector performance was evaluated based on the mass flow rates of the primary and secondary flows. The shock wave structures in the ejector mixing chamber were captured by the optical Schlieren measurements. The results show that the expansion waves in the shock train do not reach the mixing chamber wall when the ejector is working at the sub-critical mode. Decreasing of the shock wave wavelength increases the secondary mass flow rate. A three-dimensional CFD model with four turbulence models was then compared with the experimental data. The results show that the RNG k-ε model agrees best with measurements for predictions of both the mass flow rate and shock wave structures. 相似文献
9.
Sham Rane Ahmed Kovacevic Nikola Stosic Madhulika Kethidi 《International Journal of Refrigeration》2013,36(7):1883-1893
Customized grid generation of twin screw machines for CFD analysis is widely used by the refrigeration and air-conditioning industry today, but is currently not suitable for topologies such as those of single screw, variable pitch or tri screw rotors. This paper investigates a technique called key-frame re-meshing that supplies pre-generated unstructured grids to the CFD solver at different time steps. To evaluate its accuracy, the results of an isentropic compression-expansion process in a reciprocating piston cylinder arrangement have been compared. Three strategies of grid deformation; diffusion equation mesh smoothing, user defined nodal displacement and key-frame remeshing have been assessed. There are many limitations to key-frame re-meshing. It requires time consuming pre-processing, has limited applicability to complex meshes and leads to inaccuracies in conservation of calculated variables. It was concluded that customized tools for generation of CFD grids are required for complex screw machines. 相似文献
10.
A supersonic ejector chiller for industrial use is currently being developed and tested as part of a project cooperation between Frigel s.p.a and DIEF (Department of Industrial Engineering, University of Florence). The refrigerator was built following a “ready to market” setup criterion and is intended for applications on the industrial refrigeration market or in air conditioning. The plant has a nominal cooling power of 40 kW and is powered by low temperature heat (from 90 up to 100 °C). The ejector is equipped with a movable primary nozzle and 9 static pressure probes along the mixing chamber/diffuser duct. The working fluid is R245fa. An extensive numerical campaign was performed to analyze the internal dynamics of the ejector. All the simulations were carried out by accounting for the real gas properties of the refrigerant. Comparison with experimental data resulted in close agreement both in terms of global and local parameters. Analyses showed that in order to achieve an accurate matching with the experimental data, it is necessary to correctly account for the surface roughness of the ejector. This is especially true for off-design operating conditions. 相似文献
11.
The ejector refrigeration machine (ERM) offers several advantages over other heat-driven refrigeration machine, including simplicity in design and operation, high reliability and low installation cost, which enable its wide application in the production of cooling. In this paper the theoretical analysis of ejector design and ejector refrigeration cycle performance is presented. It is shown that ERM performance characteristics depend strongly on the operating conditions, the efficiency of the ejector used, and the thermodynamic properties of the refrigerant used. A 1-D model for the prediction of the entrainment ratio ω, and an optimal design for ejectors with cylindrical and conical-cylindrical mixing chambers are presented in this paper. In order to increase ERM performance values, it is necessary first of all to improve the performance of the ejector. 相似文献