首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Co-fired fly ash, derived from the co-combustion of coal and biomass, is examined as a potential precursor for geopolymers. Compared to a coal fly ash, two co-fired fly ashes have a lower vitreous content and higher carbon content, primarily due to differing combustion processing variables. As a result, binders produced with these co-fired fly ashes have reduced reaction potential. Nevertheless, compressive strengths are generally highest for all ashes activated with solutions with a molar ratio of SiO2/(Na2O + K2O) = 1, and these mixes reach the highest extent of reaction among those studied. Activation with sodium hydroxide solution forms zeolitic phases for all ashes. The thermal and dilatometric behavior of the coal and co-fired fly ash geopolymers is similar between equivalent mix designs. These results indicate that co-fired fly ashes can be viably used to form alkali-activated geopolymers, which is a new beneficial end-use for these emerging waste materials.  相似文献   

2.
Although quartz sand is widely used as filler material in construction, a few studies investigated the incorporation of quartz sand in geopolymers. To study the incorporation of quartz sand in the reinforcement of metakaolin geopolymer not only fills this gap, but also gives a clue on using non-calcinated aluminosilicates (e.g., mine tailings) in the synthesis of geopolymers. In the presence of sodium silicate, metakaolin geopolymers were synthesized with quartz sand of various size ranges as filler material. XRD, FTIR, SEM and NMR characterizations on the geopolymers indicate the dissolution, precipitation, and the formation of combination on quartz particles that associates them into the geopolymeric gel, so as to reinforce the mechanical strength of geopolymers. The compressive strength of metakaolin geopolymers with only silicate, silicate plus quartz sand and silicate plus rutile sand is 31.2, 52.2 and 41.5 MPa, respectively. In geopolymer with silicate and quartz sand, a decreasing Si/Al ratio as increasing distance from the quartz particle is observed through an energy dispersive X-ray (EDX) mapping. The SEM images and NMR spectra suggest that the formed combination is of several micrometers with main species of polysialates (-Si-O-) such as Q4(2Al), Q4(1Al).  相似文献   

3.
This paper presents characterization of bond strength of geopolymers at ambient and elevated temperatures. The bond strength of 18 different formulations of metakaolin (MK)/fly ash (FA) based geopolymers is evaluated through double shear tests in 20–300 °C temperature range. The test parameters include fly ash content, SiO2/K2O ratio, solid-to-liquid ratio and Si/Al ratio. In addition the effect of additives, namely short carbon fibers, basalt fibers and styrene–acrylate emulsion in MK/FA precursor, on bond strength is studied. Data from the tests show that geopolymers exhibit slightly lower bond strength than that of epoxy resin at room temperature, however geopolymers retain much higher bond strength in 100–300 °C range. Addition of small quantity of short carbon fibers in MK/FA precursor does not significantly influence bond strength of geopolymers at ambient temperature, but greatly improve bond strength retention in 100–300 °C through crack control mechanism.  相似文献   

4.
The Al2O3-2SiO2 powders for sol-gel synthesis have good phosphoric acid activation properties. The phase evolution of phosphoric acid-based geopolymers at elevated temperatures is similar to that of alkali-based metakaolin geopolymers. The chemosynthetic phosphoric acid-based geopolymers have been found to possess extremely good thermal stability, with no sign of melting up to 1550 °C. The onset temperature of crystallization of the specimens occurred at 900 °C. The amount of quartz and berlinite crystal reached a maximum at approximately 1000 °C. Further exposure to 1150 °C showed that quartz and berlinite phases were converted to cristobalite and aluminum phosphate.  相似文献   

5.
《Advanced Powder Technology》2014,25(3):1087-1093
Fluidized bed combustion (FBC) is an environmentally friendly process for burning of coal and is used in many small factories located in urban area. The FBC fly ash is an environmental problem and needs good disposal or utilization. This research studied the strength and resistance to sulfate and acid of alkali-activated FBC fly ash–silica fume composite. The FBC fly ash was interground with silica fume (at the dosage levels of 1.5%, 3.75% and 5.0%) to make the source material homogenous with increased reactivity. Addition of silica fume enabled the adjustment of SiO2/Al2O3 ratios (6.55-7.54) of composite and improved the strength and resistance to sulfate and acid of composite. The composite with 3.75% silica fume showed the optimum strength with 28-day compressive strength of 17.0 MPa. The compressive strengths of composite with 3.75% silica fume immersed in 5% magnesium sulfate solution and 3% sulfuric acid solutions were substantially higher than the control. The strength loss was from the high calcium content of FBC fly ash and incorporation of silica fume thus increased the durability of the composite.  相似文献   

6.
Pure Al2O3–2SiO2 precursors (powders) for a geopolymer were prepared by a sol–gel method. The alkali-activated products derived from the precursors meet the general criteria for a geopolymer. The structure of the powders was investigated by NMR, XRD, and FTIR analysis, and their alkali-activation properties were studied. The data show that the powders when heat treated at 200 °C begin to contain 5-coordinated Al, those heat treated at 300 °C can begin to undergo alkali-activation, and those heat treated at 300–800 °C possess a number of structure characteristics similar to metakaolin, and the properties of their alkali-activated products are similar to those of the metakaolin geopolymers.  相似文献   

7.
The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1 + 1) of this coal and a stabilized SS (Biogran®) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test.Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.  相似文献   

8.
A systematic study of geopolymers by 29Si and 27Al MAS NMR has been carried out in an attempt to understand polymer structural details. 27Al MAS NMR data shows that transient aluminium species are formed during the reaction of metakaolin with NaOH. Interaction of silicate anions with the aluminium sites of metakaolin was evident during the synthesis of geopolymers as observed from low field shift of 29Si MAS NMR resonance lines of silicate centres. As the reaction progresses, the coordination of aluminium (IV, V and VI) in metakaolin changes almost completely to IV. 29Si MAS NMR of selected compositions of the ternary system of sodium silicate, metakaolin and aqueous alkali reveals that geopolymerisation occurs in a distinct compositional region. At high alkalinity [> 30% (mol/mol) overall Na2O content], connectivity of silicate anions is reduced, consistent with poor polymerisation. At low alkalinity [<10% (mol/mol) overall Na2O content], a clear 29Si NMR resonance line due to unconverted metakaolin is observed. NMR spectra were recorded from a series of samples with a fixed Na2O content (20 mol%) and varied SiO2/Al2O3 ratio to observe aluminium substitution in the cross-linked silicon tetrahedra of polymer network. Aluminium insertion into the silicate network is confirmed from the observed 29Si NMR shift as a function of Si/Al ratio. The identification of the presence or absence of metakaolin in the cured geopolymer product is not possible even by 29Si NMR as the signal from metakaolin is indistinguishable from a broad 29Si NMR peak consisting of many resonance lines from the network of cross-linked silicon/aluminium tetrahedra. In an attempt to identify metakaolin signal, we prepared geopolymers with higher SiO2/Al2O3 molar ratios. Since aluminium substitutions in the silicate tetrahedral network are decreased, this results in better-resolved 29Si NMR lines. The 29Si NMR signal due to metakaolin is then distinguishable in the spectra of cured products in a series of samples with 3 to 11 mol% metakaolin. These results indicate that a geopolymer structure is a network of silicon/aluminium tetrahedra with some presence of unreacted metakaolin. The silicon/aluminium tetrahedra might have connectivity ranging from 1 to 4.  相似文献   

9.
This article assesses the effect of mix design parameters on the compressive strength and thermal performance of alkali silicate-activated blends of metakaolin (MK) and granulated blast furnace slag (GBFS). A strong interrelationship between the effects of activator composition and the GBFS/(GBFS + MK) ratio is identified through statistical analysis of compressive strength data. Pastes formulated with higher SiO2/Al2O3 molar ratios show improvements in mechanical strength with increasing GBFS addition, associated with the formation of a structure comprising coexisting aluminosilicate ‘geopolymer’ gel and Ca-rich Al-substituted silicate hydrate (C-(A)-S-H) reaction products. The inclusion of GBFS in MK-based geopolymers seems also to improve their performance when exposed to high temperatures, as higher residual compressive strengths are reported for these mixtures compared to solely MK-based systems. Only slight differences in shrinkage behaviour are observed at temperatures of up to 600 °C with the inclusion of GBFS; however, slag-blended pastes exhibit enhanced stability at temperatures exceeding 800 °C, as no variation in the compressive strength and no additional shrinkage are identified. These results suggest that nanostructural modifications are induced in the gel by the inclusion of GBFS into MK-based geopolymers, improving the overall performance of these materials.  相似文献   

10.
The thermal shrinkage and weight loss of a systematic series of geopolymers with nominal composition of NaAlO2(SiO2) z · 5.5H2O (1.15 ≤ z ≤ 2.15) made by activation of metakaolin with sodium silicate solutions are presented. The thermal behaviour of Na-geopolymers are varied, but may be categorised into four regions of behaviour exhibited by all specimens. This investigation explores the effect of nominal Si/Al on the processes and mechanisms of thermal shrinkage and weight loss throughout constant heating of Na-geopolymer. The overall thermal shrinkage of Na-geopolymer increases with increasing nominal Si/Al, with the onset temperature of structural densification occurring at lower temperature with increasing Si/Al. Thermal shrinkage is observed to result from capillary strain, dehydroxylation and viscous sintering in different temperature regions, and is explored by use of dilatometry, thermogravimetry, nitrogen porosimetry and use of different constant heating rates.  相似文献   

11.
王顺风  马雪  张祖华  王爱国  李亚林 《材料导报》2018,32(16):2757-2762
地质聚合物因其优异的力学性能、化学稳定性、耐高温等性能,在建筑、耐火、有毒有害离子固化等领域备受关注。本研究通过压汞法(MIP)、FT-IR、SEM测试分析了粉煤灰-偏高岭土基地质聚合物的孔径分布、凝胶结构及断裂方式,探讨了偏高岭土掺量对其结构与性能的影响。结果表明:地质聚合物的孔径分布随水灰比的调整存在大范围的变化,最可几孔径由几个纳米到100nm。当水灰比固定时,偏高岭土掺量由25%(质量分数)增加至60%(质量分数),地质聚合物中气孔均以凝胶孔为主,最可几孔径由40nm减小至26nm,总气孔率无显著变化,但有害孔的孔隙率明显由3.6%降至0.09%。偏高岭土掺量的增加,提高了凝胶相多元环结构中[AlO_4]的数目,使材料呈均匀化、致密化结构,尤其是改善了未反应粉煤灰颗粒与凝胶相之间的界面结合。偏高岭土掺量为60%时,裂纹在粉煤灰颗粒堆积气孔或薄弱界面周围的快速扩展得到有效控制,抗压强度显著提高,7d龄期时强度达到75.5 MPa。  相似文献   

12.
In this study, a set of mechanical properties of geopolymers, synthesized by alkali (NaOH or KOH) activation of metakaolin and SiO2 mixture, were characterized at ambient temperature. Samples with K/Al or Na/Al atomic ratios equal to 1, Si/Al atomic ratios in the 1.25–2.5 range and H2O/Al2O3 molar ratios of 11 or 13 are cured at 80 °C for 24 and 48 h before characterization, to determine effect of Si/Al ratio and curing time on the structure and mechanical properties of geopolymers. The structure of synthesized geopolymers characterized using XRD, NMR, SEM, and density measurements was correlated to their mechanical properties, including compressive strength, Young’s modulus, hardness, and fracture toughness. The results of this study suggest a strong effect of Si/Al ratios (in the 1.5–2 range), density, and microstructure on the maximum strength, Young’s modulus, and hardness of geopolymers. There were also notable differences in strength between samples cured for 24 and 48 h, suggesting that the degree of geopolymerization reaction also plays important role in mechanical properties of this new class of inorganic polymers.  相似文献   

13.
The mechanical properties of four different types of geopolymers, but of the same composition (Na/Al ≈ 1, Si/Al ≈ 2 molar ratio), made using a combination of precursors, were determined. The four types were: (i) sodium aluminate (NaAlO2/NaOH solution), Ludox (colloidal SiO2 solution) and metakaolin (MK), (SAGP), (ii) NaOH, fumed silica and MK (FSGP), (iii) Ludox, NaOH and MK (LGP) and (iv) commercial sodium silicate and MK (SGP). The highest crushing strength (CCS) value obtained was for SGP (70 MPa) and the lowest value was for SAGP (16 MPa). The highest modulus of rupture (MOR) value obtained was for LGP (9 MPa) and the lowest value was for SAGP (3 MPa). The fracture toughness (K1c) and Young’s modulus (E) showed the same trend. The effect of adding sand (40 wt%) on their mechanical properties was also determined. The K1c values increased up to 65% and E values increased up to 80% compared to samples free of sand. However, CCS and MOR values did not change much and gave mixed results. Overall, porosity is found to be the chief microstructural variable limiting the mechanical properties of the geopolymers. The properties of the geopolymers are compared with those of ordinary Portland cement.  相似文献   

14.
This study presents the results of experiments aiming to produce geopolymers from glass cullet, a non-traditional material compared to those usually found in the manufacture of geopolymers (e.g., metakaolin and fly ash). The study gives the principal formulation parameters affecting the behavior of glass cullet geopolymers. The glass used comes from recycled glass bottles. The parameters studied are the fineness of the glass (Blaine of 1000 to 4000 cm2/g), the temperature of synthesis (20, 40 and 60 °C), and the nature and concentration of the activation product (KOH, NaOH). The properties are evaluated in terms of compressive strength and durability. The results show that cullet of soda-glass can be used as a base material for the production of geopolymers and, contrary to metakaolin-based geopolymers, no waterglass is necessary for its setting and hardening since cullet glass already contains a high proportion of alkalis. Thermal activation at 40 or 60 °C is necessary but sufficient to obtain strength of more than 50 MPa, especially for the finer glass (4000 cm2/g). The durability of glass cullet geopolymers is affected by water conservation.  相似文献   

15.
Geopolymers with different content of α-Al2O3 particle filler were prepared. The thermo-mechanical and microstructural characterization of the obtained geopolymers were systematically studied by flexural strength and thermal shrinkage measurements, TG-DTA (thermogravimetry and differential thermal analysis), XRD (X-ray diffractometry), and SEM (scanning electron microscopy). The results show that the addition of α-Al2O3 particle filler not only increases the onset crystalline temperature but also reduces the crystalline velocity of the geopolymers. The thermal shrinkage of the geopolymers increases with increasing heat treatment temperatures due to the water loss and densification. The flexural strength of the geopolymers increases with the increase of heat treatment temperatures from RT to 1200 °C, and shows a sharp increase in the range from 600 °C to 800 °C due to crystallization and solidification. The increase in content of α-Al2O3 particle filler can clearly reduce the thermal shrinkage and maintain a higher porosity at high temperatures. However, it has no distinct influence on the flexural strength after heat treatment. This is mainly attributed to the higher thermal resistance and strength of α-Al2O3.  相似文献   

16.
In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O2, CO, CO2, SO2, NO x and total hydrocarbons (C m H n ) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO2 and NO x emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios.  相似文献   

17.
As environmentally-friendly materials, geopolymers have the potential to replace ordinary Portland cement (OPC) for the construction of railway sleepers and multi-flue chimneys, where the vibration control capabilities of the material must be considered. The critical damping value (ξ) is the main parameter in relation to vibration reduction. In this study, the traditional logarithmic decrement technique was used to measure the ξ of geopolymers. Geopolymers were prepared by activating fly ash using alkali solutions with different SiO2/Na2O ratios. The results show that the ξ of the geopolymers is similar to that of the OPC counterpart. Finite element analysis (FEM) based on the Rayleigh damping model was conducted to replicate the test results, and scanning electron microscopy and mercury-intrusion porosimetry were used to study the microstructure of the geopolymers. A discussion of the possible damping mechanisms based on the microstructural investigation and the FEM analysis is presented.  相似文献   

18.
New hybrid materials with no phase separation up to nanometric level were obtained by performing the in situ co-reticulation of an aluminosilicate source (metakaolin), a mixture of dialkylsiloxane oligomers with different degrees of polymerization and an alkaline solution. As supported by SEM and NMR analyses, these hybrid materials are characterized by a highly interpenetrated structure due to the chemical similarity between the components, resulting in excellent physical and mechanical properties compared to neat geopolymers. These promising results represent a further step in developing alternative “low-carbon” binders (as also geopolymers) with improved engineering properties in the concrete technology. The enhanced mechanical properties, along with the high fire resistance, also suggest their utilization for structural applications as heat insulating and heat-resistant panels for the construction industry, and in the production of heat-resistant protective coatings or adhesives for technologically advanced uses.  相似文献   

19.
Fluidized bed coal combstion (FBC) is extensively used in small self-generation power plants. The fly ash obtained from this FBC process contains high quantity of calcium and sulfate compounds which hinders its use in the construction industry. In addition, its reactivity is low and additional source material or additive is, therefore, needed to increase the reaction. This research studied the use of Al(OH)3 and high concentrations of NaOH to control ettringite formation in the FBC fly ash geopolymer. Two replacement levels of 2.5 wt.% and 5.0 wt.% of Al(OH)3 and three NaOH concentrations of 10, 12 and 15 M were used in the study. Results indicated that the NaOH concentration affected the ettringite formation and strength of the FBC geopolymer. No ettringite was formed at high NaOH concentration of 15 M which helped the dissolution of calcium sulfate and formed the additional calcium hydroxide. The subsequent pozzolanic reaction led to strength gain of the geopolymer. For 15 M NaOH, the addition of 2.5 wt.% Al(OH)3 promoted the reaction and formed a dense matrix of alumino silicate compound. Relatively high 7-day compressive strength of 30 MPa was obtained.  相似文献   

20.
Abstract

Waterwall corrosion has become a serious problem in the USA since the introduction of combustion systems, designed to lower NOx emissions. Previous papers have shown that the main cause of the increased corrosion is the deposition of corrodants, iron sulfides and alkali chlorides, which occurs under reducing conditions. In this paper, the contribution of various variables such as the amount of corrodant in the deposit, the flue gas composition and the metal temperature, is further quantified in laboratory tests, using a test furnace allowing thermal gradients across the deposit and the metal tube samples. Approximate deposit compositions were calculated from the coal composition, its associated ash constituents and corrosive impurities. A commercially available thermochemical equilibrium package was used, after modifications to reflect empirical alkali availability data. Predictions from these calculations agreed reasonably well with the alkali chloride and FeS content found in actual boiler deposits. Thus approximate corrosion rates can be predicted from the chemical composition of the coal using corrosion rates from laboratory tests, adjusted to account for the short duration (100 hours) of the laboratory tests. Reasonable agreement was again obtained between actual and predicted results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号