首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
毛育青  柯黎明  江周明 《材料导报》2018,32(20):3612-3617
以0.02 mm厚的铜箔作为标示材料、1 mm和2 mm厚的2024铝合金薄板作为基材,采用不同的叠加方式组成叠层并进行搅拌摩擦焊接(Friction stir welding, FSW)试验,分析搅拌针端部挤压区塑性金属的流动行为及其对焊缝成形的影响。结果表明,在FSW焊接过程中,焊缝上部被塑化的金属不断地沿着搅拌针螺纹旋向往搅拌针端部迁移、长大,形成挤压区。此挤压区由位于搅拌针两侧的扩展区和位于搅拌针端面下方的变形区组成。其中,变形区的金属一部分来自从焊缝上部迁移而来的塑性金属;另一部分来自搅拌针端面下方母材经旋转摩擦作用而发生塑性变形的金属。挤压区塑性金属的流动方式分为轴向挤压迁移、水平摩擦迁移和绕流迁移三种。对厚板进行FSW焊接时,挤压区的塑性金属倾向以绕流迁移方式为主,导致焊缝内部形成疏松区或孔洞型缺陷。  相似文献   

2.
搅拌摩擦焊接过程中,焊缝成形与金属流动行为密切相关,而金属流动又取决于焊接工艺参数、搅拌头形貌、材料本身性能及温度场分布等影响因素。与铝合金薄板搅拌摩擦焊不同,厚板焊接时焊缝上部、下部温差太大,导致焊缝材料流动形态发生较大变化。基于焊缝成形理论,从焊缝金属流动分析方法、影响因素出发,分析厚板搅拌摩擦焊焊缝金属流动形态及特征,探讨焊缝中疏松、未焊透、包铝伸入、弱连接等缺陷的形成原因,揭示厚板搅拌摩擦焊焊缝成形机理。研究结果为铝合金厚板搅拌摩擦焊焊接技术在航空、航天等高科技领域的广泛应用提供科学依据和理论基础。  相似文献   

3.
Friction stir welding (FSW) is a solid state welding process for joining aluminum alloys and has been employed in aerospace, rail, automotive and marine industries for joining aluminium, magnesium, zinc and copper alloys. In FSW, the base metal properties such as yield strength, ductility and hardness control the plastic flow of the material under the action of rotating non-consumable tool. The FSW process parameters such as tool rotational speed, welding speed, axial force, etc. play a major role in deciding the weld quality. In this investigation, an attempt has been made to establish relationship between the base material properties and FSW process parameters. FSW joints have been made using five different grades of aluminium alloys (AA1050, AA6061, AA2024, AA7039 and AA7075) using different combinations of process parameters. Macrostructural analysis has been done to check the weld quality (defective or defect free). Empirical relationships have been established between base metal properties and tool rotational speed and welding speed, respectively. The developed empirical relationships can be effectively used to predict the FSW process parameters to fabricate defect free welds.  相似文献   

4.
A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process. Three-dimensional results under different process parameters were presented. Results indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The calculated temperature field can be fitted well with the one from the experimental test. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface, which is formed by the specific material flow patterns in FSW. The maximum temperature can be increased with increasing the welding speed and the angular velocity in the current numerical modelling.  相似文献   

5.
In this work, thermo-mechanical behavior and microstructural evolution in similar and dissimilar friction stir welding of AA6061-T6 and AA5086-O have been investigated. Firstly, the thermo-mechanical behaviors of materials during similar and dissimilar FSW operations have been predicted using three-dimensional finite element software, ABAQUS, then, the mechanical properties and the developed microstructures within the welded samples have been studied with the aid of experimental observations and model predictions. It is found that different strengthening mechanisms in AA5086 and AA6061 result in complex behaviors in hardness of the welded cross section where the hardness variation in similar AA5086-O joints mainly depends on recrystallization and generation of fine grains in weld nugget, however, the hardness variations in the weld zone of AA6061/AA6061 and AA6061/AA5086 joints are affected by subsequent aging phenomenon. Also, both experimental and predicted data illustrate that the peak temperature in FSW of AA6061/AA6061 is the highest compared to the other joints employing the same welding parameters.  相似文献   

6.
建立了搅拌摩擦焊热源模型,利用有限元分析软件ABAQUS模拟了搅拌摩擦焊的温度场,研究了焊接速度、搅拌头轴肩尺寸和垫板材质对搅拌摩擦焊接过程中试板的温度场的影响。结果表明:随着焊接速度的提高,焊件上各点的峰值温度降低,经历高温区的时间减少;轴肩摩擦热是热输入的主要来源,随着搅拌头轴肩尺寸的增加,焊缝中心高温区同一等温线上宽下窄的分布特征越来越明显;垫板材质明显影响焊件底部的温度和分布;适当的焊接参数、搅拌头尺寸及散热条件对获得较好的焊缝质量极为重要。  相似文献   

7.
Friction stir welding (FSW) is a solid state welding process for joining aluminium alloys and is employed in aerospace, rail, automotive and marine industries. In FSW, the base metal properties such as yield strength, hardness and ductility control the plastic flow of the material under the action of a rotating non-consumable tool. The FSW process parameters such as, the tool rotational speed, the welding speed and the axial force play a major role in deciding the weld quality. In this investigation, FSW joints were made using six different grades of aluminium alloys (AA1100, AA2219, AA2024, AA6061, AA7039, and AA7075) using different levels of process parameters. Macrostructural analysis was carried out to identify the feasible working range of process parameters. The optimal welding conditions to attain maximum strength for each alloy were identified using Response Surface Methodology (RSM). Empirical relationships were established between the base metal mechanical properties of aluminium alloys and optimised FSW process parameters. These relationships can be effectively used to predict the optimised FSW process parameters from the known base metal properties (yield strength, elongation and hardness).  相似文献   

8.
The influence of the plastic behaviour of two aluminium alloys, very popular in welding construction, on friction stir weldability, is analysed in this work. The two base materials, a non-heat-treatable (AA5083-H111) and a heat-treatable aluminium (AA6082-T6) alloy, are characterised by markedly different strengthening mechanisms and microstructural evolution at increasing temperatures. Their plastic behaviour, under different testing conditions, was analysed and compared. The two base materials were also welded under varied friction stir welding (FSW) conditions in order to characterise their weldability. The relation between weldability, material flow during FSW and the plastic behaviour of the base materials, at different temperatures, was analysed. It was found that the AA6082 alloy, which displays intense flow softening during tensile loading at high temperatures, and is sensitive to dynamic precipitation and overageing under intense non-uniform deformation, displays good weldability in FSW. Under the same welding conditions, the AA5083 alloy, which in quasi-static conditions displays steady flow behaviour at increasing temperatures, and is sensitive to moderate hardening at high strain rates, displays poor weldability.  相似文献   

9.
Friction stir welding is a new solid state joining technology, which is suitable for joining some hard-to-weld materials, such as aluminum alloy, magnesium alloy, etc. The modeling of material flows can provide an efficient method for the investigation on the mechanism of friction stir welding. So, 3D material flows under different process parameters in the FSW process of 1018 steel are studied by using rate-dependent constitutive model. Numerical results indicate that the border of the shoulder can affect the material flow near the shoulder–plate interface. The mixture of the material in the lower half of the friction stir weld can benefit from the increase in the angular velocity or the decrease in the welding speed. But flaws may occur when the angular velocity is very high or the translational velocity is very small. When the angular velocity applied on the pin is small or the welding speed is high, the role of the extrusion of pin on transport of the material in FSW becomes more important. Swirl or vortex occurs in the tangent material flow and may be easier to be observed with the increase in the angular velocity of the pin.  相似文献   

10.
针对某型高强度焊接材料焊缝金属韧性波动的现象进行了分析。通过对同一批次以及不同批次焊接材料焊缝金属低温冲击功数据进行统计、计算,结果表明,(1)对于同一批次焊接材料,韧性波动呈正态分布,应与不同焊接工艺控制状态所导致的冷速差异有关;(2)对于不同批次焊接材料,其硫磷元素的含量水平,是导致其韧性变化的关键因素。欲在工程上获得高韧性的焊接接头,可在焊接工艺和焊接材料杂质元素含量两个方面给予严格控制。  相似文献   

11.
目的对民机用铝合金加筋壁板搅拌摩擦焊接残余应力及变形进行研究。方法采用热-力耦合数值模拟方法,分析民机用铝合金加筋壁板搅拌摩擦焊接过程,分别模拟了采用3种焊接顺序进行蒙皮-长桁焊接时,壁板温度场分布规律及焊后残余应力及变形情况。结果铝合金壁板搅拌摩擦焊接后,沿焊缝方向残余应力为拉应力,由此导致长桁及与其连接的蒙皮产生向上的挠曲变形,垂直焊缝方向,焊缝两侧的壁板向上翘曲。结论对于3种焊接顺序,采用"先两侧、后中心"由外向里的焊接顺序,得到的壁板残余变形最小。  相似文献   

12.
In friction stir welding (FSW), the material under the rotating action of non-consumable tool has to be stirred properly to get defect free welds in turn it will improve the strength of the welded joints. The welding conditions and parameters are differing based on the mechanical properties of base materials such as tensile strength, ductility and hardness which control the plastic deformation during friction stir welding. The FSW process parameters such as tool rotation speed, welding speed and axial force, etc. play a major role in deciding the weld quality. FSW Joints of cast aluminium alloys A319, A356, and A413 were made by varying the FSW process parameters and the optimum values were obtained. In this investigation, empirical relationships are established and they can be effectively used to predict the optimum FSW process parameters to fabricate defect free joints with high tensile strength from the known base metal properties of cast aluminium alloys.  相似文献   

13.
Friction-stir welding is a refreshing approach to the joining of metals. Although originally intended for aluminium alloys, the reach of FSW has now extended to a variety of materials including steels and polymers. This review deals with the fundamental understanding of the process and its metallurgical consequences. The focus is on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.  相似文献   

14.
The main aim of the present work is to predict the microstructural features like grain size and dislocation density in the weld zone during friction stir welding (FSW) of similar (Al6061T6/Al6061T6) and dissimilar (Al6061T6/Al5086O) Aluminium grades using Cellular Automata Finite Element (CAFE) approach. The FSW process is not modelled with the stirring action, instead heat flux, strain-rate and strain are incorporated by analytical models. The grain size is controlled through cellular automata (CA) cells and dislocation density is related to this by two different (analytical and empirical) models. After FSW, four different methods are proposed for predicting the tensile behaviour of weld zone and the efficiency of these methods is evaluated through validations. The results indicate that the thermal, strain-rate, and strain models are accurate enough in their predictions when compared with existing results. The grain size predictions from CAFE model, which include the transition rule, are also consistent with the literature results, both for similar and dissimilar material combinations. The analytical model shows better dislocation density prediction than empirical model when compared with the experimental data. Of all the methods proposed for tensile behaviour prediction, the CAFE model that includes dislocation density evolution using the second model is efficient and accurate. The stress–strain data predicted from an averaged flow stress of many CA cells is also encouraging. Through these results, it has been demonstrated that the CAFE approach along with few validated analytical models can be used to predict the micro-features and forming aspects during FSW consistently.  相似文献   

15.
TEM study of the FSW nugget in AA2195-T81   总被引:1,自引:0,他引:1  
During friction stir welding (FSW) the material being joined is subjected to a thermal-mechanical process in which the temperature, strain and strain rates are not completely understood. To produce a defect free weld, process parameters for the weld and tool pin design must be chosen carefully. The ability to select the weld parameters based on the thermal processing requirements of the material, would allow optimization of mechanical properties in the weld region. In this study, an attempt is made to correlate the microstructure with the variation in thermal history the material experiences during the FSW process.  相似文献   

16.
Conventional friction stir welding(FSW) and ultrasonic assisted friction stir welding(UAFSW) were employed to weld 6-mm thick 7 N01-T4 aluminum alloy plates. Weld forming characteristics and material flow behavior in these two different welding processes were studied and compared. Ultrasonic vibration was applied directly on the weld in axial direction through the welding tool. Metal flow behavior,microstructure characteristics in the nugget zone(NZ) and evolution of the mechanical properties of naturally aged joints were studied. Results show that the ultrasonic vibration can significantly increase the welding speed of defect-free welded joint. At the rotation speed of 1200 rpm, the UAFSW can produce defect-free welded joints at a welding speed that is 50% higher than that of the conventional FSW.Ultrasonic vibrations can also improve surface quality of the joints and reduce axial force by 9%. Moreover, ultrasonic vibrations significantly increase the volume of the pin-driven zone(PDZ) and decrease the thickness of the transition zone(TZ). The number of subgrains and deformed grains resulting from the UAFSW is higher than that from the FSW. By increase the strain level and strain gradient in the NZ,the ultrasonic vibrations can refine the grains. Ultrasonic energy is the most at the top of the NZ, and gradually reduces along the thickness of the plate. The difference in strengths between the FSW and the UAFSW joints after post-weld natural aging(PWNA) is small. However, the elongation of the UAFSW is8.8% higher than that of the FSW(PWNA for 4320 h). Fracture surface observation demonstrates that all the specimens fail by ductile fracture, and the fracture position of the UAFSW joint changes from HAZ(PWNA for 120 h) to NZ(PWNA for 720 and 4320 h).  相似文献   

17.
18.
Surface striations with spacing equal to feed rate per rotation and banded structures in the weld nugget are some of the striking features of friction stir welding. However, their formation is still subject to some debate. This study contributes to comprehend their formation by evaluating the possible role played by the eccentricity of the tool during the welding of an aluminium alloy and using a plasticine as its analogue. The eccentric movement is visualized to generate both surface and bulk striations in plasticine. By voluntarily using non optimized welding conditions on aluminium, the material flow has been deduced and confronted with direct visual observations through high speed camera on plasticine. In the non closed section of the weld, two lobes each with thickness equal to feed rate per rotation were observed. First lobe corresponds to flow induced by the pin and tests on plasticine showed constant volume displacement per rotation for a given tool eccentricity. The second lobe is generated by material flow from under the shoulder back to the rear of the pin. The assembling or not of these two lobs behind the pin can explain some of the characteristic patterns observed in the weld nugget such as onion rings, oxide dispersions and cavities.  相似文献   

19.
The aim of this study is to examine the effect of main friction stir welding (FSW) parameters on the quality of acrylonitrile butadiene styrene (ABS) plate welds. Welds were carried out in a FSW machine, using a tool with a stationary shoulder and no external heating system. The welding parameters studied were the tool rotational speed which varied between 1000 and 1500 (rpm); the traverse speed which varied between 50 and 200 (mm/min), and the axial force ranging from 0.75 to 4 (kN). The major novelty is to study the influence of the parameter axial force on FSW of polymers. Produced welds have always a tensile strength below the base material, reaching the maximum efficiencies of above 60 (%) for welds made with higher rotational speed and axial force. Good quality welds are achieved without using external heating, when the tool rotational speed and axial force are above a certain threshold. Above that threshold the formation of cavities and porosity in the retreating side of the stir zone is avoided and the weld region is very uniform and smooth. For low rotational speed and axial force welds have poor material mixing at the retreating side and voids at the nugget. For this reason the strain at break of these welded plates is low when compared with that of base material.  相似文献   

20.
Tool offset is one the most significant parameters in joining of dissimilar materials by friction stir welding (FSW) process. An investigation is carried out on the effect of tool offset toward thermal history, material flow pattern, mechanical properties, welding force, and weld joint morphology. It was found that offsetting toward aluminum side along with a plasma-assisted heat source is an efficient approach to address one of the most important apprehensions in aluminum-copper solid-state welding process. The offset influences the amount of intermetallic at the joint interface and in-effect impacts on final strength and material flow behavior. The optimum and continuous layer of intermetallic produces the maximum weld joint strength. The specimen welded with optimum tool offset shows the highest strength using 55 A plasma current in hybrid friction stir welding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号