共查询到20条相似文献,搜索用时 78 毫秒
1.
Steel base metal laps or welding electrode surfaces were coated using graphene suspensions with various concentrations, and then the steel plates were welded using the shielded metal arc welding process. Microstructural observations showed that the addition of graphene to the weldment significantly refines the microstructure and promotes the formation of fine acicular ferrite. The results of mechanical testing indicated that with lower concentrations of graphene in the weldment, both the strength and ductility improve, but the hardness remains unchanged in comparison to the unreinforced weld metal. However, reinforcing with a higher concentration of graphene gives rise to the significant enhancement of the hardness and strength without deterioration of the ductility. 相似文献
2.
This investigation focuses on the feasibility of heterogeneous welded joints between DP600 steel and aluminium 6082. The process adopted used a power laser in two modes: keyhole welding and laser-induced reactive wetting. All the results of the study show that the use of laser welding of galvanised sheets, in the keyhole mode, can achieve a joint shear strength of 140 MPa by optimising the process parameters and controlling the penetration, which must be limited to 600 μm. Another key factor with this welding method is control of the inter-sheet gap, which was achieved by using a clamping system that ensured a rigid joint while maintaining a constant gap sufficient to allow the escape of zinc vapour. This approach enabled an increase in shear strengths of 200 MPa to be obtained and the zinc acted as a beneficial factor to the welding process. With the laser-induced reactive wetting mode, the joint between galvanised sheets was more brittle because of the formation of a non-uniform reaction layer. With this mode, the presence of zinc is a factor that limits the growth of the reaction layer and, at the same time, leads to a mechanical deterioration of the joint; test results indicate that mechanical strength was limited to about 80 MPa. 相似文献
3.
《Materials Science & Technology》2013,29(5):454-462
The influence of zirconium on the mechanical properties and phase transformation was investigated in low carbon steel. First, the steels are subjected to a special thermomechanical regime, and the hot rolled plates were used to characterise the tensile properties and impact toughness. Second, the phase transformation behaviour of the steels with various Zr contents was evaluated by both dilatometry and metallography. Finally, to confirm the existence of Zr containing precipitates in the Zr added steels, transmission electron microscopy and energy dispersive spectroscopy were used. It was verified that plenty of fine spherical (Nb,Ti,Zr)C, which is identified to be nearly 10?nm, can be formed when the concentration of Zr is in the range of 0.015–0.030%. The effects of zirconium on the phase transformation, including proeutectoid ferrite and pearlite transformation, and mechanical properties evolution were also identified and discussed. 相似文献
4.
This paper is concerned with tensile characteristics of auto grade low carbon, ultra low carbon and micro alloyed steel sheets under low to intermediate strain rates ranging from 0.0007 to 250 s−1. Experimental investigation reveals two important aspects of these steels under intermediate strain rate deformation. Firstly, the yield stress increases with strain rate in all these steels. Of course yield stress increment is higher for low carbon and ultra low carbon steel sheets. Secondly, the strain hardening rate drastically decreases with strain rate for low carbon and ultra low carbon steel sheets, whereas it remains steady for micro alloyed steel sheets. Based on these observations, a constitutive model has been proposed which predicts the strain rate sensitive flow behavior of all these grades within the strain rate range of automotive crash event. 相似文献
5.
Susil K. Putatunda Codrick MartisJames Boileau 《Materials Science and Engineering: A》2011,528(15):5053-5059
In this investigation, a new low alloy and low carbon steel with exceptionally high strength and high fracture toughness has been developed. The effect of austempering temperature on the microstructure and mechanical properties of this new steel was examined. The influence of the microstructure on the mechanical properties and the fracture toughness of this steel was also studied.Test results show that the austempering produces a unique microstructure consisting of bainitic ferrite and austenite in this steel. There were significant improvement in mechanical properties and fracture toughness as a result of austempering heat treatments. The mechanical properties as well as the fracture toughness were found to decrease as the austempering temperature increases. On the other hand, the strain hardening rate of steel increases at higher austempering temperature. A linear relationship was observed between strain hardening exponent and the austenitic carbon content. 相似文献
6.
CSP生产低碳钢的组织演变和析出物研究 总被引:10,自引:0,他引:10
为了阐明EAF-LF-CSP工艺生产的低碳钢组织细化机理,在薄板坯和不同道次变形后的同一轧件上取样,利用金相、SEM、TEM、XEDS等技术研究了连轧过程中显微组织演变和钢中第二相析出物.结果表明:与普通连铸板坯相比薄板坯的凝固组织更加细小;随轧制道次增加,薄板坯表面和心部的组织差异逐渐减小,轧后室温组织细化;CSP生产的低碳钢中存在大量纳米尺寸的氧化物和硫化物,起到细化晶粒的作用.CSP生产中采用快速冷却和凝固工艺、单道次大压下连轧工艺和层流冷却工艺,是成品组织细化的主要原因. 相似文献
7.
2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat surface on both the top and bottom sides of the welded joints was obtained. In addition, the hook shape usually generated in the conventional FSSW was eliminated by this technique, and the unbonded interface was parallel to the surface of the sheets. Owing to the enlarged bonded interface width by eliminating the keyhole and the intermixed interface by the adjustable probe, the plug fracture occurred under all the welding conditions in the present study. Due to the suppression of the thickness thinning and elimination of the hook shape, the joint performance was improved in the plug fracture mode. The shear tensile performance was considered to strongly depend on the microstructure in the tip area of the unbonded interface and the maximum shear fracture load of 23.0 kN was achieved in this study. 相似文献
8.
《材料科学技术学报》2019,35(8):1543-1554
Friction stir welding (FSW) was performed to produce Al/Ti lap joints under various welding conditions. More heat was generated when rotational rate increased or traversing rate decreased. Two types of Al/Ti interfaces – mixed interface and diffusive interface – were formed under different welding conditions. The diffusive interface was formed with low heat input, and the mixed interface was formed more heat. The grains at the mixed interface were larger than those at the diffusive interface because of the higher heat input. Moreover, the microstructure of the mixed interface had a lower texture intensity compared with that of the diffusive interface, which was attributed to the enhanced continuous dynamic recrystallization (CDRX). TiAl3 was formed at the diffusive interface. When the interface varied to the mixed interface as heat input increased, TiAl was fomed within the Al/Ti mixture following the formation of TiAl3. In addition, TiAl3 precipitates were observed in the diffusion layer. The hardness value of the mixed interface was higher than 350 HV, due to the larger amount of intermetallic compounds (IMCs). The lap shear strength reached a maximum value of 147 MPa with medium heat input and an interface that exits in a critical state between diffusive and mixed interfaces. All the specimens fractured at the interface, which was attributed to the presence of IMCs. 相似文献
9.
A. SETO Y. YOSHIDA A. GALTIER 《Fatigue & Fracture of Engineering Materials & Structures》2004,27(12):1147-1155
Fatigue properties of arc‐welded lap joints with weld start and end points were investigated through experiments with 2.3‐mm and 3.2‐mm thick 440 MPa‐class steel sheets. Macroscopic fatigue crack‐initiation sites depended on the length of the weld bead to the specimen width. In joints with shorter weld beads, cracks mainly initiated at the toe of the weld start points, while joints with longer beads had initial cracks at the toe of the bead centre. Crack‐propagation analyses, taking stress distribution around the weld toe and residual stress into account, suggested that residual stress distribution could move crack‐initiation sites from the weld start point to the bead centre, although the applied stress at the toe of the weld start point remains the highest. 相似文献
10.
Fastener load-transferred experiments and fatigue tests of the scarfed lap riveted joints with different lap angle were carried out. The fracture surfaces were observed by optical microscope (OM) in this paper. Both experimental and computational studies were described and compared when possible. Based on the qualitative finite element analysis (FEA), the multi-axial fatigue life of the scarfed lap riveted joints has been predicted by Smith–Watson–Topper (SWT) method and Wang–Brown (WB) method respectively. Both of the test results and predicted results show that fatigue life of scarfed lap riveted joints is remarkably increased after introducing lap angle into the faying surface. 8 mm-thick specimens with the lap angle of 1.68 °C exhibit the best fatigue performance, and 20 mm-thick with the lap angle of 3.37 °C do in the present study. Compared with the result of WB theory, the result of SWT theory is more conservative and reliable. For structures’ reliability designs, SWT theory and WB theory are all fallibility. 相似文献
11.
In a previous paper, the present authors have pointed out limitations of some fracture mechanics parameters and shown that the vectorial J-integral can be applied to adhesive joints. Here, problems concerning the practical application of the vectorial J-integral are discussed and a more suitable failure criterion has been proposed, based on a specific strain energy criterion. The specific energy is not so sensitive to the size of the integration zone since it is ‘averaged’ over the volume of the zone. This criterion has been used to model the crack initiation and propagation in single lap joints with a brittle adhesive and a ductile adhesive. The effect of the shrinkage thermal stresses, adhesive fillet, surface preparation and type of adherends (aluminium and steel) were studied. The predicted failure loads and crack patterns are in very good agreement with the experimental results. One of the major conclusions is that the predictions can explain well the experimental scatter band that is always present in single lap joints due to the difficulty of controlling the adhesive fillet. 相似文献
12.
The welded joints of the novel 3Cr pipeline steel were fabricated via the gas tungsten arc welding (GTAW) technique using an inhouse welding wire labeled as R01 and two kinds of commercial wires (H08Cr3MoMnA and TGS-2CML). Microhardness, impact toughness and tensile properties of the joints were measured, and microstructure characteristics were observed by scanning electron microscopy (SEM). The results show that under selected welding procedure, the joints of R01 can achieve quite good mechanical properties without preheating and post weld heat treatment (PWHT). After thermal refining, elongation (15.2%) doubled and met the DNV-OS-F101 standard. For low carbon or super low carbon pipeline steels such as 3Cr steel, the revised formula with the carbon applicable coefficient (A(c)) was quite good for predicting the maximum hardness in heat affected zone (HAZ). Compared with these two selected commercial wires, the inhouse welding wire R01 can provide the highest cost-performance ratio. 相似文献
13.
Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding 总被引:1,自引:0,他引:1
Jin-Hwe Kweon Jae-Woo Jung Tae-Hwan Kim Jin-Ho Choi Dong-Hyun Kim 《Composite Structures》2006,75(1-4):192-198
Composite-to-aluminum double lap joints were tested to obtain the failure loads and modes for three types of joints: adhesive bonding, bolt fastening and adhesive-bolt hybrid joining. A film type adhesive FM73 and a paste type adhesive EA9394S were used for aluminum and composite bonding. A digital microscope camcorder was used to monitor the failure of the joints. It was found that hybrid joining improves joint strength when the mechanical fastening is stronger than the bonding, as when the paste type adhesive is used. On the other hand, when the strength of the bolted joint is lower than that of the bonded joint, as when the film type adhesive is used, bolt joining contributes little to the strength of the hybrid joint. 相似文献
14.
In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals. 相似文献
15.
The characteristics of friction-welded joint between commercially pure-titanium (CP-Ti) and low carbon steel, of which was subjected to post-weld heat-treatment (PWHT), was investigated. When the joint was made with friction speed of 25?s?1, friction pressure of 200?MPa, friction time of 2.5?s and forge pressure of 250?MPa, it had the same tensile strength as that of the CP-Ti base metal. The joint had no intermediate layer consisting of intermetallic compound (IMC interlayer) at the weld interface. The joint efficiency of the joint subjected to PWHT decreased with increasing heating temperature and its holding time, and the joint fractured at the weld interface although it had no IMC interlayer. The void was generated on the weld interface of the joint during PWHT process. 相似文献
16.
《Materials at High Temperatures》2013,30(6):627-635
In the present study, the microstructure, mechanical properties and corrosion resistance of AISI 316L austenitic stainless steel to ASTM A335-P11 low alloy steel dissimilar joints, which are widely employed in the oil and gas industries especially for manufacturing of heat exchangers over 600°C, were investigated. For this purpose, two filler metals of ER309L and ERNiCrMo-3 were selected to be used with GTAW process. The results of microstructural evaluation revealed that the ERNiCrMo-3 weld metal contains dendritic and interdendritic zones, and the ER309L weld metal microstructure includes skeletal ferrites in an austenitic matrix. The maximum impact fracture energy and microhardness values were obtained for the ERNiCrMo-3 weld metal specimens; however, no significant difference was observed between the tension properties. The corrosion test results showed that the ERNiCrMo-3 has a higher corrosion resistance than ER309L. Finally, it was concluded that ERNiCrMo-3 would be a suitable filler metal for joining AISI 316L to A335-P11 for a variety of applications. 相似文献
17.
《材料科学技术学报》2019,35(9):1817-1824
Laser welding is a promising process for joining small components produced by selective laser melting (SLM) to fabricate the large-scale and complex-shaped parts. In the work, the morphology, microstructure, microhardness, tensile properties and corrosion resistance of the laser welded stress-relieved SLMed 304 stainless steel joints are investigated, as the different sections of stress-relieved SLMed 304 stainless steel are joined. Results show that the SLMed 304 stainless steel plates have a good laser weldability. The microstructure of laser-welded joints consists of the cellular dendrites in austenite matrix within columnar grains, exhibiting a coarser dendrite structure, lower microhardness (∼220 HV) and tensile properties (tensile strength of ∼750 MPa, and area reduction of ∼27.6%), but superior corrosion resistance to those of SLMed plates. The dendrite arm spacing of the joints varies from ∼3.7 μm in center zone, to ∼5.0 μm in fusion zone, to ∼2.5 μm in epitaxial zone. The SLMed anisotropy shows a negligible effect on the microstructure and performance of the laser-welded joints. The laser welding along the building directions of the SLMed base plates can induce a slightly finer dendritic structure and higher tensile properties. 相似文献
18.
The effect of microstructure on the mechanical behaviour of a low carbon, low alloy steel was studied. The hot-rolled ferrite-pearlite showed low monotonic and cyclic strengths with high ductility in terms of true fracture strain and a high shreshold stress intensity. The quenched and tempered low carbon martensite showed high monotonic and cyclic strengths and high ductility. However, the threshold stress intensity was significantly lower than that of the ferrite-pearlite. Both the strength and threshold stress intensity of an austempered bainite and a duplex ferrite-martensite are greater than those of the hot-rolled ferrite-pearlite. At a same strength level, the ductility and the threshold stress intensity of the low carbon martensite are higher than those of a medium carbon martensite. 相似文献
19.
20.
W. VisserY. Sun O. GregoryG. Plume C-E. RousseauH. Ghonem 《Materials Science and Engineering: A》2011,528(27):7857-7866
The effects of impact loading on changes in microstructure have been studied in low carbon steel. Low to moderate shock loading tests have been carried out on steel specimens using a single stage gas gun with projectile velocities ranging from 200 to 500 m/s. Stress history at the back face of the target specimen and projectile velocity prior to impact were recorded via manganin stress gauges and velocity lasers, respectively. A Johnson-Cook constitutive material model was employed to numerically simulate the material behavior of low carbon steel during impact and obtain the particle velocity at the impact surface as well the pressure distribution across the specimens as a function of impact duration. An analytical approach was used to determine the twin volume fraction as a function of blast loading. The amount of twinning within the α-ferrite phase was measured in post-impact specimens. A comparison between experimental and numerical stress histories, and analytical and experimental twin volume fraction were used to optimize the material and deformation models and establish a correlation between impact pressure and deformation response of the steel under examination. Strain rate controlled tensile tests were carried out on post-impact specimens. Results of these tests are discussed in relation to the effects of impact loading on the yield and ultimate tensile strength as well as the hardening and strain energy characteristics. 相似文献