首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium alloy (AZ31) based metal matrix composite reinforced with carbon nanotubes (CNTs) was fabricated using the technique of disintegrated melt deposition followed by hot extrusion. In this research paper, the microstructure, hardness, tensile properties, tensile fracture, high cycle fatigue characteristics, and final fracture behavior of CNTs-reinforced magnesium alloy composite (denoted as AZ31/1.0 vol.% CNT or AZ31/CNT) is presented, discussed, and compared with the unreinforced counterpart (AZ31). The elastic modulus, yield strength, tensile strength of the reinforced magnesium alloy was noticeably higher compared to the unreinforced counterpart. The ductility, quantified both by elongation-to-failure and reduction in cross-section area of the composite was higher than the monolithic counterpart. A comparison of the CNT-reinforced magnesium alloy with the unreinforced counterpart revealed a noticeable improvement in cyclic fatigue life at the load ratios tested. At all values of maximum stress, both the reinforced and unreinforced magnesium alloy was found to degrade the cyclic fatigue life at a lower ratio, i.e., under conditions of fully reversed loading. The viable mechanisms responsible for the enhanced cyclic fatigue life and tensile behavior of the composite are rationalized in light of macroscopic fracture mode and intrinsic microscopic mechanisms governing fracture.  相似文献   

2.
This paper summarizes the results of a comprehensive study on the cyclic strain resistance, low-cycle fatigue life and fracture behavior of three rapidly solidification processed magnesium alloys. Test specimens of the magnesium alloy were cyclically deformed under fully-reversed total strain amplitude control straining, over a range of strain amplitudes, giving less than 104 cycles to failure. The cyclic stress response characteristics, strain resistance and low-cycle fatigue life of the alloys are discussed in light of alloy composition. All three alloys follow the Basquin and Coffin-Manson strain relationships, and exhibit a single slope for the variation of cyclic elastic and cyclic plastic strain amplitude with reversals-to-fatigue failure. The cyclic stress response characteristics, fatigue life and final fracture behavior of the alloy are discussed in light of competing and synergistic influences of cyclic total strain amplitude, response stress, intrinsic microstructural effects and dislocation-microstructural feature interactions during fully-reserved strain cycling.  相似文献   

3.
为了给渗碳合金钢提供一种有效可行的超高周疲劳寿命预测方法,在应力比为0和0.3两种情况下,对渗碳Cr-Ni高强硬度合金钢展开疲劳试验研究.通过对试样断口的微观组织观测,发现渗碳层与基体材料中均有非金属夹杂的存在;通过对裂纹萌生位置和疲劳断口形貌的观察,将疲劳失效分为带有细晶粒区(Fine Granular Area,F...  相似文献   

4.
The substitution of conventional high strength steels (HSS) with advanced high strength steels (AHSS), e.g., low-alloy multiphase transformation-induced plasticity steel (TRIP steel) or dual-phase steel (DP steel), for body lightweight brings about increased stress of notched components. Thus the fatigue properties of TRIP and DP steels and the fatigue life of notched lightweight design are important considerations for reasonable material selection during the design stage of auto-body. For the mentioned issue, cyclic strain-controlled fatigue properties of TRIP and DP steels with equivalent grade and lightweight result were investigated experimentally. Different cyclic behaviors of TRIP and DP steels were observed due to different interior microstructures. The cyclic stress behavior of TRIP steel is characterized by cyclic hardening followed by stable at lower strain amplitudes, and softening at higher strain amplitudes; however cyclic softening followed by stable occurs consistently for DP steel throughout entire strain amplitude range of test. TRIP steel possesses enhanced fatigue life and cyclic stress at the same strain amplitude than DP steel. Furthermore, local strain-life models of two steels were developed by linear regression of experimental data, to predict and compare the fatigue life of notched body structures made of them by finite element method. The simulation result illustrates that TRIP steel can provide more beneficial potential than DP steel for the lightweight design of notched body structures from the viewpoint of fatigue resistance.  相似文献   

5.
Low-cyclic fatigue tests were conducted on semi-circle notched and V-notched specimens made of AISI 304 stainless steel. Extensive scanning electron microscopic examination of the fracture surface was also carried out to correlate the microscopic fracture surface features with the macroscopic fatigue loading parameter for this steel. The elastic-plastic fatigue test results indicated a noticeable cyclic hardening phenomenon and also a great influence of the maximum cyclic stress, the mean stress and the notch geometry on both the fatigue life and the fatigue behaviour process. Using careful sensitivity and regression analysis correlations between the macroscopic fatigue parameters on the one hand and the macroscopic and the microscopic fracture surface features on the other, these correlations are presented and clearly documented and discussed for the two notch geometries investigated.  相似文献   

6.
In this paper, the cyclic stress response and cyclic stress–strain response characteristics, cyclic strain resistance and low-cycle fatigue life, and mechanisms governing the deformation and fracture behavior of aluminum alloy 6061 discontinuously reinforced with silicon carbide (SiC) particulates are presented and discussed. Two different volume fractions of the carbide particulate reinforcement phase in the aluminum alloy metal matrix are considered. The composite specimens were cyclically deformed using fully reversed tension–compression loading under total strain-amplitude-control. The stress response characteristic was observed to vary with strain amplitude. The plastic strain-fatigue life response was found to degrade with an increase in carbide particulate content in the metal matrix. The fracture behavior of the composite is discussed in light of the interactive influences of composite microstructural effects, cyclic strain amplitude and concomitant response stress, deformation characteristics of the composite constituents and cyclic ductility.  相似文献   

7.
In this paper, the results of a recent study designed to improve our understanding of the hardness, tensile properties, cyclic fatigue response, and fracture characteristics of a spray-atomized and deposition-processed Al-Cu-Mg-Ag Alloy are presented. Specimens of the alloy were deformed to failure at ambient temperature under both quasi-static and cyclic stress amplitude-controlled conditions. The hardness, tensile properties, high-cycle fatigue response, and fracture characteristics of the alloy are compared with a conventional ingot metallurgy-processed counterpart and discussed in light of intrinsic microstructural effects, nature and magnitude of loading, and ductility of the microstructure.  相似文献   

8.
Abstract— Fatigue tests conducted under fully reversed cyclic torsion, with and without superimposed axial static tension/compression loads, were carried out using hour-glass smooth specimens in laboratory air. A high strength spring steel and a 316L stainless steel, were employed to evaluate the effects of mean stress on fatigue performance. Experimental test results show that a biaxial tensile/compressive mean stress had no influence on the cyclic stress-strain response in both materials. However a biaxial tensile mean stress was found to be detrimental to fatigue life of the high strength spring steel but had no effect on the total fatigue life of 316L stainless steel. A compressive mean stress was found to be beneficial to the life of both steels. The fatigue behaviour of the two materials was investigated by experimental observations and the application of theoretical analyses of short crack growth behaviour. Based upon the analysis of surface acetate replicas it has been found that fatigue crack growth is material/stress-state dependent. A biaxial tensile static stress promoted a change in the direction of the Stage I (mode II) crack from the longitudinal direction to a plane normal to the specimen axis in the high strength steel but not in the stainless steel. Consequently a different growth behaviour of Stage I (mode II) cracks was observed for the two materials. The effect of a biaxial mean stress on fatigue crack growth behaviour of the two materials is analysed and described in some detail.  相似文献   

9.
高强度合金抗疲劳应用技术研究与发展   总被引:8,自引:0,他引:8  
评述了超高强度钢、高强度Al合金和Ti合金表面完整性抗疲劳应用技术的研究和发展。高强度合金疲劳性能对应力集中敏感,不适当的加工工艺和切削热等造成的表面损伤和高拉应力使其疲劳和应力腐蚀性能损失殆尽。先进的表面完整性加工尤其是表面改性可显著提高疲劳性能,如激光冲击使7475-T761拉-拉疲劳寿命提高约89%,7075-T6裂纹扩展速率降低到原来的1/1500;超声喷丸使超高强度钢低周疲劳强度提高约50%,Ti7Al4Mo合金高周疲劳强度提高约15%;表面超硬化可使Vasco X-2M齿轮钢接触疲劳寿命提高30~35倍等。  相似文献   

10.
We investigate the influence of hydrogen on the mechanical properties of initial and preliminarily deformed (cyclic bending with an amplitude of 1.6% and a frequency of 0.5 Hz in helium and hydrogen under a pressure of 35 MPa) specimens of KhN55MBYu and KhN56MBYuD alloys in the temperature range 293–1073 K. The number of cycles to fracture in low-cycle bending of plane specimens and percentage elongation are most sensitive to the influence of hydrogen (decrease, respectively, by 95–98 and 80–90% of their values in helium). The decreases in the strength and plasticity of KhN55MBYu alloy are maximum at room temperature, minimum in the temperature range 873–973 K, and again substantial at 1073 K. The positive influence of the preliminary cyclic deformation in hydrogen on the ultimate short-term strength and plasticity of both alloys in hydrogen was detected. At room temperature, the percentage elongation of specimens of KhN55MBYu alloy increases from 10 (undeformed specimens) to 29% (deformed by 20% of the low-cycle fatigue life).  相似文献   

11.
The fracture surfaces of specimens of a heat-treated hard steel, namely Cr–Mo steel SCM435, which failed in the regime of N = 105 to 5 × 108 cycles, were investigated by optical microscopy and scanning electron microscopy (SEM). Specimens having a longer fatigue life had a particular morphology beside the inclusion at the fracture origin. The particular morphology looked optically dark when observed by an optical microscope and it was named the optically dark area (ODA). The ODA looks a rough area when observed by SEM and atomic force microscope (AFM). The relative size of the ODA to the size of the inclusion at the fracture origin increases with increase in fatigue life. Thus, the ODA is considered to have a crucial role in the mechanism of superlong fatigue failure. It has been assumed that the ODA is made by the cyclic fatigue stress and the synergetic effect of the hydrogen which is trapped by the inclusion at the fracture origin. To verify this hypothesis, in addition to conventionally heat-treated specimens (specimen QT, i.e. quenched and tempered), specimens annealed at 300 °C in a vacuum (specimen VA) and the specimens quenched in a vacuum (specimen VQ) were prepared to remove the hydrogen trapped by inclusions. The specimens VA and VQ, had a much smaller ODA than the specimen QT. Some other evidence of the influence of hydrogen on superlong fatigue failure are also presented. Thus, it is concluded that the hydrogen trapped by inclusions is a crucial factor which causes the superlong fatigue failure of high strength steels.  相似文献   

12.
The fatigue crack growth behaviour of 7050 T73651 high strength aluminium alloy that was originally developed for the aircraft industry was investigated in this study. The tests were conducted by using C-T specimens machined in six orientations under the action of constant amplitude sinusoidal load cycles. The tests were first carried out in laboratory air and then repeated in salt-water fog of a 5% NaCl solution to observe the effect of the environment on the fatigue crack growth behaviour. The experimental results showed that the fatigue life, maximum stress intensity range and the fatigue crack growth rate of the specimens were seriously affected by the environment. The severity of the effect, on the other hand, was observed to be dependent on the orientation. The strongest orientation was determined to be L-S, while the weakest was S-L.  相似文献   

13.
High speed steels, such as the alloy H‐13, when used as forging dies are subjected to both wear and cyclic loading, and both of these factors can affect the useful life of such dies. It follows that it is of some importance to determine the fatigue characteristics of such steels. However, fatigue studies of such alloys are limited, especially with respect to fatigue crack propagation (FCP) behaviour as a function of mean stress, and therefore more detailed studies are necessary. In the present study, the fatigue lifetimes and the crack propagation behaviour of a high speed steel were experimentally investigated in laboratory air under different stress ratios, R. A modified linear‐elastic fracture mechanics (LEFM) approach was applied to analyze the experimentally‐obtained FCP behaviour. The predicted S–N curves and crack growth behaviour for a wide range of R ratios agree well with the experimental data, and the modified LEFM approach is therefore considered to be useful for evaluation of the fatigue behaviour of this class of high strength steels.  相似文献   

14.
In this paper the multiaxial loading path effect on the fatigue crack initiation, fatigue life and fracture surface topology are evaluated for two different crystallographic microstructures (bcc and hc): high strength low-alloy 42CrMo4 steel and the extruded Mg alloy AZ31B-F, respectively.A series of multiaxial loading paths were carried out in load control, smooth specimens were used. Experimental fatigue life and fractographic results were analyzed to depict the mechanical behavior regarding the different microstructures.A theoretical analysis was performed with various critical plane models such as the Fatemi–Socie, SWT and Liu in order to correlate the theoretical estimations with the experimental data. A new approach based on maximum stress concentration factors is proposed to estimate the crack initiation plane, estimations from this new approach were compared with the measured ones with acceptable results. To implement this new approach a virtual micro-notch was considered using FEM. Moreover, the multiaxial loading path effect on stress concentration factors is also studied. The obtained results clearly show the effect of the applied load conditions on local microstructures response.  相似文献   

15.
Abstract— Thermal fatigue is a well recognised source of damage in headers and steam piping of thermoelectric power plant. This topic has been extensively examined in the past for low alloy ferritic steels typically used in such applications. Experimental evidence obtained in low cycle fatigue testing with tensile hold times on Modified 9Cr1Mo and E911 steels suggests that the Linear Damage Summation rule conventionally used in engineering codes for high temperature damage analysis may not be particulary appropriate for the advanced 9Cr steel family. For this reason two alternatives have been examined: (a) a strain based creep damage evaluation using the R5 ductility exhaustion approach and (b) a creep-fatigue continuum damage mechanics method. The potential advantages and disadvantages of both are discussed. In addition, results from low cycle fatigue and thermomechanical fatigue tests on crossweld specimens machined from welded joints in the Mod.9Cr1Mo alloy are evaluated. Even if the usual cyclic life reduction factor of 2 with respect to base material behaviour appears adequate to account for the mean trend of cross-weld results, the large variability observed risks making the use of such a factor non-conservative for accurate life prediction.  相似文献   

16.
铁素体-珠光体型非调质钢的高周疲劳破坏行为   总被引:1,自引:0,他引:1  
研究了三种碳和钒含量不同的铁素体-珠光型非调质钢的高周疲劳破坏行为,并与调质钢进行了对比.结果表明,铁素体-珠光体型非调质钢的高周疲劳性能与其微观组织特征有关.提高铁素体相硬度,其疲劳极限及疲劳极限比均提高,疲劳极限比最高可达0.60,远高于调质钢的0.50;热轧态粗大的网状铁素体-珠光体组织的疲劳性能较差,低于同等强度水平的高温回火马氏体组织。铁素体-珠光体型非调质钢疲劳破坏机制不同于调质钢,其疲劳裂纹基本上萌生于试样表面的铁素体/珠光体边界,并优先沿着铁素体/珠光体边界扩展;对于同等强度水平的调质钢,不存在像铁素体那样的软相,因而易在试样表层粗大的夹杂物处萌生疲劳裂纹.  相似文献   

17.
High strength low alloy steels are used in many different engineering areas. A commonly used joining technique for those steels is fusion welding. Generally, these components have to withstand fatigue due to dynamic loading. Using thermal joining techniques affect the mechanical properties of the steel. This study focuses on the influence of the heat input on the microstructure of high strength low alloy steels (S690). Furthermore, the fatigue behaviour with special regard to crack initiation and crack propagation is characterized.  相似文献   

18.
The paper deals with the fatigue and failure analysis of serial shot‐peened leaf springs of heavy trucks emphasizing on the influence of thermal treatment and shot peening on fatigue life. Experimental stress–life curves are determined by investigating smooth specimens subjected to fully reversed rotating bending conditions. These test results are compared to corresponding ones determined from cyclic three‐point bend tests on shot‐peened serial leaf springs in order to reveal the influence of the applied thermal treatment and shot peening process on the fatigue life of the high‐strength steel used for leaf spring manufacturing, dependent on the load level. Microstructure, macro‐ and micro‐hardness analyses are performed to support the analyses and explain the effects resulting from the certain shot peening process on the surface properties of the high‐strength spring steel under investigation. The assessment of the fatigue results reveals nearly no life improvement due to the manufacturing, emphasizing the necessity for mutual adjustment of shot peening and thermal treatment parameters to take account for life improvement.  相似文献   

19.
The influences of stress waveform and water absorption on the tension–tension fatigue fracture behavior were investigated in ±45° angle-ply laminates of aramid fiber reinforced epoxy matrix composite. For dry specimens, the fatigue strength under negative pulse waveform was higher than that under the positive pulse waveform. Rotation of fibers to the longitudinal direction, which resulted from creep deformation caused by the cyclic loading superimposed on the maximum stress hold time, decreased the compliance, thereby increasing the fatigue life under the negative pulse waveform. Water absorption degraded the fiber/matrix interfacial strength and caused the swelling of the matrix, which resulted in decreases in the static tensile strength and fatigue strength. Although the strength under the negative pulse waveform was slightly higher than that under the positive one, the influence of stress waveform on fatigue strength was smaller in wet specimens.  相似文献   

20.
Corrosion fatigue behaviour and microstructural characterisation of G20Mn5QT cast steel are investigated in simulated seawater. Fractography is performed by using scanning electron microscopy (SEM). The macroscale fracture surface and microstructure of the failed specimen are acquired including the crack initiation, crack propagation, and pitting evolution. The maximum cyclic stress (S) versus number of cycles to failure (N) curves is derived by three‐parameter fatigue curve method. Fatigue life is predominantly controlled by the corrosion pitting‐induced crack initiation when tested in simulated seawater at lower stress levels. As the maximum cyclic stress is less than 185 MPa, the chloride ion erosion is the main influence factor, which affects the fatigue failure of the G20Mn5QT cast steel in simulated seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号