首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R1234ze(E), trans-1, 3, 3, 3-tetrafluoropropene, is a fluorinated propene isomer which may be a substitute of R134a for refrigeration applications. R1234ze(E) has a much lower GWP100-years than that of R134a. In this paper, the local heat transfer coefficient during condensation of R1234ze(E) is investigated in a single minichannel, horizontally arranged, with hydraulic diameter equal to 0.96 mm. Since the saturation temperature drop directly affects the heat transfer rate, the pressure drop during adiabatic two phase flow of R1234ze(E) is also measured. Predictive models are assessed both for condensation heat transfer and pressure drop. A comparative analysis is carried out among several fluids (R1234ze(E), R32, R134a and R1234yf) starting from experimental data collected at the same conditions and using the Performance Evaluation Criteria (PEC) named Penalty Factor (PF) and Total Temperature Penalization (TTP) to rank the tested refrigerants in forced convective condensation.  相似文献   

2.
新型制冷剂R1234ze(E)及其混合工质研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
低GWP值制冷剂R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)作为R134a较为理想的替代品而被关注,但其单一成分的热力学性能和传输特性并不理想,在R1234ze(E)中混入R32成分可以有效改善其热力学性能。本文概述了低GWP值工质R1234ze(E)及其与R32混合物的热物性特征、传输特性及系统运行性能方面的研究现状,并与目前常用的制冷工质进行比较分析,指出R1234ze(E)与R32混合工质有望成为新型低GWP值替代工质。  相似文献   

3.
Reducing energy consumption by utilizing heat recovery systems has become increasingly important in industry. This paper presents an exploratory assessment of heat pump type heat recovery systems using environmentally friendly refrigerants. The coefficient of performance (COP) of 4 cycle configurations used to raise the temperature of heat media to 160 °C with a waste heat at 80 °C is calculated and compared for refrigerants R717, R365mfc, R1234ze(E), and R1234ze(Z). A multiple-stage “extraction” cycle drastically reduces the throttling loss and exergy loss in the condensers, resulting in the highest COP for R1234ze(Z). A cascade cycle using R1234ze(Z) and R365mfc has a relatively high COP and provides practical benefits. Even under adverse conditions, the primary energy efficiency is greater than 1.3 when the transmission end efficiency of the electric power generation is 0.37. The assessment demonstrated that high-temperature heat pumps are a promising approach for reducing primary energy consumption for industrial applications.  相似文献   

4.
为了满足逐步严苛的环保法规要求,R1234yf成为车用热泵制冷剂R134a的热门替代制冷剂之一。本文对R1234yf热泵技术的研究进行了综述与分析,其GWP<1,各方面性质均符合车用热泵系统的工作需求。在传热效果上,R1234yf的沸腾传热性能略优于R134a,且冷凝过程压降比R134a低5%~10%,优于R134a系统。在诸多R1234yf和R134a系统的仿真和实验研究中,R1234yf热泵性能略低于R134a,但可以通过优化零部件、强化补气、改善工况等方式使其与R134a十分接近甚至超越。R1234yf低压饱和压力比R134a高约15%,可以适配更高的压缩机转速,低温下制热性能比R134a更好,且较低的压缩机排气温度使系统工作更为稳定,强化补气的效果也优于R134a。因此,R1234yf在车用热泵中具有较好的工作性能和发展前景,可以作为R134a的替代制冷剂。  相似文献   

5.
R1234ze(E)(1,1,1,3-四氟丙烯)是当下具有较强替代潜能的环保制冷剂之一,本文搭建了溶解度测试实验系统,对R1234ze(E)在两种多元醇脂油中的溶解度进行测试,测试的温度范围为40~80 ℃,压力范围为0.123~0.360 MPa。采用PR状态方程和MHV2混合规则及NRTL活度系数模型对实验结果进行关联计算,得到不同温度下的交互系数及计算值与实验值的平均相对误差。结果表明,R1234ze(E)在两种多元醇脂油中的溶解度均随着温度的升高而降低,且R1234ze(E)在两种多元醇脂油中的平衡压力与溶解度之间存在立方函数关系。在两种多元醇酯油中,计算值与实验值的平均相对误差分别为1.68%和1.11%,可较好的描述R1234ze(E)在两种多元醇酯油中的相平衡行为。  相似文献   

6.
制冷空调领域内使用量最大的HCFCs制冷剂目前正处于加速淘汰的阶段,替代品、替代技术路线的选择至关重要.本文介绍R32,R1234yf(R1234ze),ZCI系列和DYR系列等新型合成类替代制冷剂的最新研究进展,从基本热物性、传热特性、理论循环、机组性能等多个角度与最主要的HCFCs制冷剂R22进行对比,并分析部分替代品的应用前景,为我国制冷空凋行业制冷剂替代工作提供参考.  相似文献   

7.
为了获得混合制冷剂R1234yf/R32的热物性数据,本文以Burnett法为基础搭建了高精度PVTx实验台,在温度为253~313 K时,测定了质量分数为15%/85%和25%/75%混合制冷剂R1234yf/R32的PVT性质,拟合了两种不同配比的混合工质的气态维里方程,为进一步研究该工质的基础热物性提供了详实的数据。  相似文献   

8.
The present work reports a numerical analysis of a single-phase supersonic ejector working with R134a as well as hydrofluoroolefin (HFO) refrigerants R1234yf and R1234ze(E). Comparisons were made regarding the ejector performances under varying operating conditions and refrigerant mixture proportions. The calculations have been then extended to an existing ejector heat driven refrigeration cycle (EHDRC). R1234yf appears to be a good candidate for drop-in replacement of R134a in a real EHDRC, while using R1234ze(E) would induce some modifications due to its thermodynamic properties. Maintaining the same pressure ratio for the ejector would lead on one hand to better entrainment ratio using R1234ze(E) and on the other hand to reduced coefficient of performance (COP) and cooling power by 4.2% and 26.6% in average, respectively. Using R1234yf under the same conditions induces a decrease of 5.2% for the entrainment ratio, 9.6% for the COP and 19.8% for the cooling power in average.  相似文献   

9.
为了获得混合制冷剂R1234yf/R134a的热物性数据,本文利用Burnett法为基础搭建的高精度PVTx实验台,在温度为268~323 K时,测定了质量分数为55%/45%,50%/50%和45%/55%混合制冷剂R1234yf/R134a的PVT性质,最终拟合了三种不同配比的混合工质的气态维里方程,方程和实验数据具有较高的重合度。  相似文献   

10.
The vapor viscosities of the new refrigerant R1234yf and its binary mixtures, R32+R1234yf, R125+R1234yf, were measured at atmospheric pressure with a falling-ball-type viscometer. The combined expanded uncertainty of the measurement apparatus was less than 1.5%. The binary mixtures consisted of 20.0, 30.0, 40.0, and 50.0 wt% R32 for R32+R1234yf and of 20.0, 35.0, 50.0, and 70.0 wt% R125 for R125+R1234yf. The viscosities of R1234yf were correlated with the Chapman–Enskog gas kinetic theory and those of binary mixtures were correlated with the Wilke mixture rule. The average absolute deviation (AAD) is 0.189% for R32+R1234yf and 1.169% for R125+R1234yf. The deviations of experimental viscosities of the binary mixtures from data calculated using RefProp v9.1 were also obtained. The AAD is 0.555% for R32+R1234yf and 1.479% for R125+R1234yf.  相似文献   

11.
Owing to the growing concerns about the relatively high global warming potential (GWP) of current refrigerants, a serious effort is in progress to find lower-GWP substitutes. The hydrofluoroolefin (HFO)-based refrigerants R1234yf and R1234ze(E) are being considered for use in multiple heating, ventilation, air conditioning, and refrigeration applications because of their very low GWP. A study was conducted to model a residential heat pump water heater using these HFOs. A system model was calibrated using experimental data and the calibrated model was used to evaluate the potential of HFOs to replace R134a. A series of parametric analyses were used to investigate the impacts of condenser wrap pattern, condenser tube size, evaporator size, and heat loss factor from the storage tank. It has been shown that both R1234yf and R1234ze(E) can be substituted for R134a with comparable performance and no substantial modifications to the original system. This study presents a detailed feasibility analysis for successful replacement of high-GWP refrigerants with low-GWP refrigerants with acceptable performance.  相似文献   

12.
Starting from January 1st 2011, as stated by the Directive 2006/40/EC, fluorinated greenhouse gases with a global warming potential (GWP) higher than 150 can not be used in automotive applications any more. For this reason, 1,1,1,2-tetrafluoroethane (R134a), commonly used for these applications, will be abandoned and substituted by refrigerants with lower GWP. In recent times, a new fluid, 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) has been proposed as an interesting alternative, since it has a very low GWP and thermodynamic properties very similar to R134a. At the moment, only few data can be found on the thermodynamic properties of this new refrigerant and, in particular, its behaviour in solution with commonly used compressor lubricants is still to be evaluated. Here, solubility experimental data of R1234yf in a Polyalkylene Glycol (PAG) and in a specifically modified Double-Capped PAG (DC-PAG) commercial lubricants are measured with a static synthetic method at isothermal conditions, in the temperature range between 258 K and 338 K.  相似文献   

13.
This paper presents a model of shell and tube evaporator with micro-fin tubes using R1234yf and R134a. The model developed for this evaporator uses the ε-NTU method to predict the evaporating pressure, the refrigerant outlet enthalpy and the outlet temperature of the secondary fluid. The model accuracy is evaluated using different two-phase flow boiling correlations for micro-fin tubes and comparing predicted and experimental data. The experimental tests were carried out for a wide range of operating conditions using R134a and R1234yf as working fluids. The predicted parameter with maximum deviations, between the predicted and experimental data, is the evaporating pressure. The correlation of Akhavan– Behabadi et al. was used to predict flow boiling heat transfer, with an error on cooling capacity prediction below 5%. Simulations, carried out with this validated model, show that the overall heat transfer coefficient of R1234yf has a maximum decrease of 10% compared with R134a.  相似文献   

14.
The surface tension of R1243zf, R1234ze(Z), and R1233zd(E) were measured at temperatures from 270 K to 360 K by an experimental apparatus based on the differential capillary rise method. The deviation between the measured surface tension of R134a and R245fa and the calculated surface tension with REFPROP 9.1 (Lemmon et al., 2013) was ±0.13 mN m−1, which is less than the estimated propagated uncertainty in surface tension of ±0.2 mN m−1. Eleven points, thirteen points, and ten points of surface tension data were provided for R1243zf, R1234ze(Z), and R1233zd(E), respectively, in this paper. The measured data and the estimated surface tension using the methods of Miller, 1963, Miqueu et al., 2000, and Di Nicola et al. (2011) agree within the standard deviation of ±0.43 mN m−1. The empirical correlations that represent the measured data within ±0.14 mN m−1 were proposed for each refrigerant.  相似文献   

15.
本文针对含HFOs类混合制冷剂黏度开展实验和模型研究。采用振动弦法黏度计对R32纯质和R32/R1234yf混合制冷剂黏度进行了实验测量,测量的温度范围分别为263~350 K、263~360 K,压力最高均为30 MPa,实验系统黏度测量的不确定度为2%。本文共获得了177组实验数据,利用得到的实验数据,基于硬球模型分别拟合了R32纯质和R32/R1234yf混合制冷剂黏度方程。R32纯质黏度实验数据与方程的平均绝对偏差为0.28%,最大绝对偏差为0.92%;R32/R1234yf混合工质黏度实验数据与方程的平均绝对偏差为0.69%,最大绝对偏差为2.09%。由此可见,实验数据和黏度模型吻合较好,为R32和R32/R1234yf混合制冷剂的应用研究提供了重要参考依据。  相似文献   

16.
R1234ze(E) has a GWP<1 and a normal boiling temperature approximately 7.3 °C lower than that of R134a; it represents an interesting candidate for its replacement as working fluid in refrigerating machines. The refrigerant charge minimization in refrigerating and air conditioning equipment is a key issue for the new environmental challenges. Mini microfin tubes represent an optimal solution for both heat transfer enhancement and charge minimization tasks. This paper presents an experimental study of R1234ze(E) flow boiling inside a mini microfin tube with internal diameter at the fin tip of 3.4 mm. The experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m−2 s−1 and 940 kg m−2 s−1, the vapour quality from 0.2 to 0.99 at three different heat fluxes: 10, 25, and 50 kW m−2. The experimental results are then compared with those obtained for the more traditional R134a.  相似文献   

17.
本文从理论方面研究了混合制冷剂的相平衡特性,基于Peng-Robinson(PR)状态方程与Wong-Sandler(WS)混合法则,结合Predictive Soave Redlich Kwong(PSRK)方程中使用的UNIFAC基团贡献法,构建了混合物气液相平衡预测模型(PRWS-UNIFAC-PSRK)。结果表明:二元混合物R32/R1234yf的压力及气相质量分数的模拟结果与实验值偏差分别在±2.5%和±0.02内;三元混合物R134a/R1234yf/R600a的压力及气相组分质量分数计算值与实验数据的偏差基本在±3%和±0.04内;建立了R1234yf/R290/R134a系的三元相平衡图,当质量分数在0.25/0.70/0.05左右时存在共沸点。通过采用多参数状态方程,改进活度系数模型,获取更为准确的二元相互作用系数,可进一步提高模型的预测精度。  相似文献   

18.
Condensation is usually assumed to begin when the bulk enthalpy reaches the saturated vapor enthalpy, which leads to discontinuity of heat transfer coefficient calculation in modeling. This paper addresses the discontinuity by showing the presence of condensation in desuperheating region when the wall temperature decreases below the saturation temperature at any operating condition. The experiments have been conducted with R134a, R1234ze(E) and R32 for mass fluxes of 100–300 kgm−2 s−1, saturation temperatures of 30°C–50 °C and from x = 0.05 to superheat of 50 °C in a horizontal smooth tube with 6.1 mm inner diameter. R134a is observed to have approximately 10% higher and 20% lower HTC compared to R1234ze(E) and R32 respectively. Cavallini correlation predicted the data within an accuracy of 12% while Kondo-Hrnjak correlation predicted HTC for condensation in de-superheating zone within accuracy of 23%.  相似文献   

19.
在热泵热水器名义工况下,本文建立了热泵系统循环热力学模型,利用EES程序对混合工质R1234ze/HCs及对应的纯工质热泵系统循环性能进行了对比分析。结果表明:R1234ze/R600在质量分数(20/80)和R1234ze/R600a在质量分数(40/60)存在最优配比,对应的最大制热COP_h分别为3. 41和3. 32,而R1234ze/R290则呈现单调下降趋势。R1234ze/R600(20/80)系统的制热COP_h比R1234ze/R600a(40/60)、R1234ze、R290、R600、R600a系统分别高2. 7%、17%、0. 09%、16. 3%和17. 8%,排气温度为76. 9℃,冷凝压力为0. 711 MPa,压比为6. 32,有望成为新型替代工质。  相似文献   

20.
Exergy analysis is a useful way for determining the real thermodynamic losses and optimising environmental and economic performance in the systems such as vapour compression refrigeration systems. The present study deals with the exergy analysis on a two evaporator vapour compression refrigeration system using R1234yf, R1234ze and R134a as refrigerants. In the calculation of losses occurring in different system components, besides the exergy efficiency of the refrigeration cycle, a computer code was developed by using Engineering Equation Solver (EES-V9.172-3D) software package program. The effects of the evaporator and condenser temperatures on the exergy destruction and exergy efficiency of the system were investigated. R1234yf and R1234ze, which are good alternatives to R134a concerning their environmentally friendly properties and this is the most significant finding emerging from this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号