首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
介绍了一种用于高速流水线ADC双沿采样的时钟占空比稳定电路。在传统占空比稳定电路的基础上,增加含连续时间积分器的反馈环路,并设计了时钟周期检测电路,同时可通过SPI配置积分器的参考电压,在片外调节芯片制造过程中产生的误差,并在前端增设一个高增益带宽时钟放大器,用来放大幅度很小(Vp-p100mV)的差分输入时钟信号。电路采用0.18μm 1.8V 1P5MCMOS工艺,可对频率范围为50~250MHz、占空比范围为10%~90%的输入时钟进行稳定调节,时钟峰-峰值抖动约为0.3ps@250MHz。  相似文献   

2.
周启才  吴俊  郭良权 《微电子学》2014,(1):74-77,91
介绍了一种用于高速流水线ADC双沿采样的时钟占空比稳定电路。在传统占空比稳定电路的基础上,增加含连续时间积分器的反馈环路,并设计了时钟周期检测电路,同时可通过SPI配置积分器的参考电压,在片外调节芯片制造过程中产生的误差,并在前端增设一个高增益带宽时钟放大器,用来放大幅度很小(Vp-p<100 mV)的差分输入时钟信号。电路采用0.18 μm 1.8 V 1P5M CMOS工艺,可对频率范围为50~250 MHz、占空比范围为10% ~ 90%的输入时钟进行稳定调节,时钟峰-峰值抖动约为0.3 ps @ 250 MHz。  相似文献   

3.
设计了一种用于电荷域流水线ADC的高速电荷比较器电路,该比较器包括电荷采样电路、共模不敏感开关电容网络和锁存放大器。仿真结果表明,在0.18μm CMOS工艺条件下,该比较器在250 MHz时钟下性能良好,采用该比较器的12位250 MS/s电荷域ADC内的2.5位子级电路功能正确。  相似文献   

4.
介绍了一种用于高速ADC的低抖动时钟稳定电路.这个电路由延迟锁相环(DLL)来实现.这个DLL有两个功能:一是通过把一个时钟沿固定精确延迟半个周期,再与另一个沿组成一个新的时钟来调节时钟占空比到50%左右;二是调节时钟抖动.该电路采用0.35 μm CMOS工艺,在Cadence Spectre环境下进行仿真验证,对一个8 bit、250 Msps采样率的ADC,常温下得到的时钟抖动小于0.25 ps rms(典型的均方根).  相似文献   

5.
郭仲杰  刘申  苏昌勖  曹喜涛  李晨  韩晓 《电子器件》2021,44(5):1036-1040
本文提出一种高精度时钟信号占空比校正方法,采用环路负反馈的理论产生延时控制电压,并通过延时可控的占空比调整电路来产生高精度占空比的时钟信号。基于0.18μm工艺对所提出的校正方法进行了具体电路设计和PVT全面仿真验证,输入频率在100MHz占空比变化范围6%~97%时,该方法都可以动态精确的输出频率为100MHz占空比为50%的信号,最大误差小于0.28%,功耗仅为4.8mW,为高精度ADC采样和转换提供了高效的解决方案。  相似文献   

6.
《电子与封装》2017,(2):25-27
设计了一种用于高速流水线ADC的多相时钟产生电路。通过采用一种高灵敏度差分时钟输入结构和时钟接收电路,降低了输入时钟的抖动。该多相时钟产生电路已成功应用于一种12位250MSPS流水线ADC,电路采用0.18μm 1P5M 1.8 V CMOS工艺实现,面积为2.5 mm2。测试结果表明,该ADC在全速采样条件下对20 MHz输入信号的信噪比(SNR)为69.92 d B,无杂散动态范围(SFDR)为81.17 d B,积分非线性误差(INL)为-0.4~+0.65 LSB,微分非线性误差(DNL)为-0.2~+0.15 LSB,功耗为320 m W。  相似文献   

7.
设计了一种完全满足高速高精度流水线A/D转换器的时钟稳定电路.通过在延迟环路中加入启动电路,使环路能在小于300 ns内快速锁定占空比,锁定精度为50%±1%.拥有20%~80%的占空比输入,且能很好地抑制外部时钟抖动,时钟抖动小于100 fs.电路采用0.35 μm工艺制作,芯片面积为0.5 mm×0.3 mm,在3.3 V电源电压下,功耗小于78 mW.  相似文献   

8.
张洁  王志亮 《电子器件》2024,47(1):36-41
设计了一款应用于高性能延迟锁相环的占空比修正电路。该电路主要由差分放大电路、占空比调整电路、缓冲器电路和占空比检测电路组成,采用TSMC 40 nm CMOS工艺和1.1 V的电源电压。仿真的结果表明,时钟频率2 GHz~8 GHz,占空比20%~80%的输入时钟信号,经过占空比修正电路调节后,输出时钟信号占空比变为50%±0.2%,可应用于高性能延迟锁相环中。  相似文献   

9.
给出了一个SMIC0.13μmCMOS工艺的10bit/60MHz流水线ADC的设计方法。该电路去掉了采样保持电路,同时引入运放分享技术,从而大大降低了功耗。仿真结果显示。在60MHz时钟采样时,其ENOB为9.67bit,SFDR为75.2dB。  相似文献   

10.
本文提出了一种适用于高速、高精度流水线ADC的无采样保持运算放大器(SHA-less)结构。使用可变电阻带宽修调电路以及MDAC与flash ADC的对称性设计,减少了两种单元电路间的采样误差,通过增加MDAC采样电容复位时钟和独立的flash ADC采样电容技术,消除了采样电容残留电荷引起的踢回噪声。本设计作为14位125-MS/s流水线ADC的前端转换级,基于ASMC 0.35- BiCMOS工艺的仿真和测试结果表明,前端转换级芯片面积1.4?2.9 mm2,使用带宽修调后,125 MHz采样,30.8 MHz输入信号下,SNR从63.8 dB提高到70.6 dB,SFDR从72.5 dB提高到81.3 dB,转换器的动态性能在150 MHz的输入信号频率下无明显下降。  相似文献   

11.
We describe a new design technique for efficient harmonic resonant rail drivers. The proposed circuit implementation is coupled to a standard pulse source and uses only discrete passive components and no external dc power supply. It can thus be externally tuned to minimize the consumed power in the target IC. A new design technique based on current-fed voltage pulse-forming network theory is proposed to find the value of each discrete component for a target frequency and a given load capacitance. The proposed circuit topology can be used to generate any desired periodic 50% duty-cycle waveform by superimposing multiple harmonics of the desired waveform, however, this paper focuses on the generation of trapezoidal-wave clock signals. We have tested the driver with a capacitive load between 38.3 and 97.8 pF with clock frequency ranging between 0.8 and 15 MHz. The overall power dissipation for our second-order harmonic rail driver is 19% of fC/sub L/V/sup 2/ at 15 MHz and 97.8 pF load.  相似文献   

12.
An all-digital cycle-controlled delay-locked loop (DLL) is presented to achieve wide range operation, fast lock and process immunity. Utilizing the cycle-controlled delay unit, the proposed DLL reuses the delay units to enlarge the operating frequency range rather than cascade a huge number of delay units. Adopting binary search scheme, the two-step successive-approximation-register (SAR) controller ensures the proposed DLL to lock the input clock within 32 clock cycles regardless of input frequencies. The DLL operates in open-loop fashion once lock occurs in order to achieve low jitter operation with small area and low power dissipation. Since the DLL will not track temperature or supply variations once it is in lock, it is best suited for burst mode operation. Given a supplied reference input with 50% duty cycle, the DLL generates an output clock with the duty cycle of nearly 50% over the entire operating frequency range. Fabricated in a 0.18-/spl mu/m CMOS one-poly six-metal (1P6M) technology, the experimental prototype exhibits a wide locking range from 2 to 700 MHz while consuming a maximum power of 23 mW. When the operating frequency is 700 MHz, the measured peak-to-peak jitter and rms jitter is 17.6 ps and 2.0 ps, respectively.  相似文献   

13.
设计了一种宽频率工作范围、可编程的频率合成器.引入自偏置的DLL结构及启动电路扩展系统频率范围,消除误锁定,在保证DLL系统稳定性及不改变系统锁定状态的基础上,实现倍频器倍频因子的随意转换.同时使用两位寄存器配置初始电压,保证系统的快速锁定.该频率合成器用0.13μm 1.8VCMOS工艺实现,工作频率范围为14~700MHz,可供选倍频数为1,2,4,8.在输入时钟为50MHz、倍频数为8、输出时钟频率为400MHz的工作频率下,系统功耗为28.44mW,周期抖动约为9.8ps.  相似文献   

14.
Low power flip-flop with clock gating on master and slave latches   总被引:1,自引:0,他引:1  
A new flip-flop is presented in which power dissipation is reduced by deactivating the clock signal on both the master and slave latches when there are no data transitions. The new circuit overcomes the clock duty-cycle constraints of previously proposed gated flip-flops. The power consumption of the presented circuit is significantly lower than that of a conventional flip-flop when the D input has a reduced switching activity  相似文献   

15.
A 1-Gb/s/pin 512-Mb DDRII SDRAM has been developed using a digital delay-locked loop (DLL) and a slew-rate-controlled output buffer. The digital DLL has a frequency divider for DLL input, performs at an operating frequency of up to 500 MHz at 1.6 V, and provides internal clocking with 50% duty-cycle correction. The DLL has a current-mirror-type interpolator, which enables a resolution as high as 14 ps, needs no standby current, and can operate at voltages as low as 0.8 V. The slew-rate impedance-controlled output buffer circuit reduces the output skew from 107 to 10 ps. This SDRAM was tested using a 0.13-/spl mu/m 126.5-mm/sup 2/ 512-Mb chip.  相似文献   

16.
A delay-locked loop (DLL) using a statistical background calibration circuit (SBCC) is presented. This SBCC is utilized to calibrate the charge pump. Eighty identical arbiters with random mismatch effectively measure the phase error between the input and output clocks. Therefore, the static phase error of the DLL is improved. The proposed DLL has been fabricated in 0.18- $mu$m CMOS process. Its active area is 0.078 ${hbox {mm}}^{2}$ . The power dissipation is 35 mW for the supply of 1.8 V and the input clock of 1.2 GHz. This DLL operates from 900 MHz to 1.2 GHz. The measured static phase error is 15.45 and 2.92 ps without and with the SBCC, respectively at 1.2 GHz.   相似文献   

17.
The proposed pulsewidth control loop (PWCL) adopts the same architecture as the conventional PWCL, but with a new duty-cycle detector and a new pulse generator. Using the new building block circuits, the clock frequency can be increased tremendously, and the output of the PWCL has fixed rising edge, which will not disturb the phase-locking result by a preceding phase-locked loop (PLL) or delay-locked loop (DLL). This means that the clock buffer can include a PLL/DLL and a PWCL to perform phase locking as well as pulsewidth adjustment simultaneously. All the building blocks used in the new PWCL have simple circuit structures that are suitable for low-voltage operation. A test chip is implemented in a 0.35-/spl mu/m CMOS process with only 1.8-V V/sub DD/ successfully generates a clock signal with a 0.6-ns pulsewidth for a heavily pipelined multiplier to operate at 400 MHz. The features of operating at low voltage, providing variable duty cycle, and being able to cooperate with PLL/DLL make the new PWCL suitable for system-on-chip (SOC) applications.  相似文献   

18.
何小威  陈亮  冀蓉  李少青  曾献君 《电子学报》2007,35(8):1572-1576
本文介绍了采用纯数字相位合成法设计的高性能时钟50%占空比调节电路PB-DCC(Phase-Blending Duty-Cycle Corrector).相比于传统的占空比调节方式,此电路通过采用SMD(Synchronous Mirror Delay)技术具有较强的抗PVT(Process,Voltage and Temperature)变化的能力,输出时钟和原时钟完全同步和较快的调节速度等特点.经0.13μm CMOS工艺版图实现后HSPICE模拟表明,该占空比调节电路对占空比在10%~90%范围内的400MHz时钟能在4个周期内完成调节,输出时钟占空比为48%~52%.  相似文献   

19.
This paper describes a 150-400 MHz programmable clock multiplier which uses a recirculating DLL. The clock multiplier uses a sampling phase detector and employs chopping, autozeroing and various other circuit techniques to reduce static phase offset and crosstalk between the reference and the output clock. The DLL is implemented in 0.18-mum CMOS, consumes 16 mW of power, and achieves 1-5 ps RMS jitter and -70 dBc reference spur level.  相似文献   

20.
A wide-range delay-locked loop with a fixed latency of one clock cycle   总被引:1,自引:0,他引:1  
A delay-locked loop (DLL) with wide-range operation and fixed latency of one clock cycle is proposed. This DLL uses a phase selection circuit and a start-controlled circuit to enlarge the operating frequency range and eliminate harmonic locking problems. Theoretically, the operating frequency range of the DLL can be from 1/(N/spl times/T/sub Dmax/) to 1/(3T/sub Dmin/), where T/sub Dmin/ and T/sub Dmax/ are the minimum and maximum delay of a delay cell, respectively, and N is the number of delay cells used in the delay line. Fabricated in a 0.35 /spl mu/m single-poly triple-metal CMOS process, the measurement results show that the proposed DLL can operate from 6 to 130 MHz, and the total delay time between input and output of this DLL is just one clock cycle. From the entire operating frequency range, the maximum rms jitter does not exceed 25 ps. The DLL occupies an active area of 880 /spl mu/m/spl times/515 /spl mu/m and consumes a maximum power of 132 mW at 130 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号