首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The therapeutically relevant hypoxia inducible factor HIF‐1α–p300 protein–protein interaction can be orthosterically inhibited with α‐helix mimetics based on an oligoamide scaffold that recapitulates essential features of the C‐terminal helix of the HIF‐1α C‐TAD (C‐terminal transactivation domain). Preliminary SAR studies demonstrated the important role of side‐chain size and hydrophobicity/hydrophilicity in determining potency. These small molecules represent the first biophysically characterised HIF‐1α–p300 PPI inhibitors and the first examples of small‐molecule aromatic oligoamide helix mimetics to be shown to have a selective binding profile. Although the compounds were less potent than HIF‐1α, the result is still remarkable in that the mimetic reproduces only three residues from the 42‐residue HIF‐1α C‐TAD from which it is derived.  相似文献   

2.
Targeting Bcl‐x L /Bak : A family of rationally designed α‐helix mimetics with improved solubility and synthetic feasibility based on a benzoylurea scaffold is presented. These benzoylurea derivatives favor a linear conformation stabilized by an intramolecular hydrogen bond, and are able to mimic the spatial projection of the i, i+4, and i+7 residues of an α‐helix. Binding affinities of the benzoylurea derivatives to Bcl‐xL have been assessed using fluorescence polarization competition assays and isothermal titration calorimetry.

  相似文献   


3.
4.
5.
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM ). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM ) or Bcl‐2 (Ki≈1 μM ). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM ). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.  相似文献   

6.
The development of small molecules that inhibit protein–protein interactions continues to be a challenge in chemical biology and drug discovery. Herein we report the development of indole‐based fragments that bind in a shallow surface pocket of a humanised surrogate of RAD51. RAD51 is an ATP‐dependent recombinase that plays a key role in the repair of double‐strand DNA breaks. It both self‐associates, forming filament structures with DNA, and interacts with the BRCA2 protein through a common “FxxA” tetrapeptide motif. We elaborated previously identified fragment hits that target the FxxA motif site and developed small‐molecule inhibitors that are approximately 500‐fold more potent than the initial fragments. The lead compounds were shown to compete with the BRCA2‐derived Ac‐FHTA‐NH2 peptide and the self‐association peptide of RAD51, but they had no effect on ATP binding. This study is the first reported elaboration of small‐molecular‐weight fragments against this challenging target.  相似文献   

7.
Cyclin‐dependent kinases (CDKs) control many cellular processes and are considered important therapeutic targets. Large collections of inhibitors targeting CDK active sites have been discovered, but their use in chemical biology or drug development has been often hampered by their general lack of specificity. An alternative approach to develop more specific inhibitors is targeting protein interactions involving CDKs. CKS proteins interact with some CDKs and play important roles in cell division. We discovered two small‐molecule inhibitors of CDK–CKS interactions. They bind to CDK2, do not inhibit its enzymatic activity, inhibit the proliferation of tumor cell lines, induce an increase in G1 and/or S‐phase cell populations, and cause a decrease in CDK2, cyclin A, and p27Kip1 levels. These molecules should help decipher the complex contributions of CDK–CKS complexes in the regulation of cell division, and they might present an interesting therapeutic potential.  相似文献   

8.
The ability to identify inhibitors of protein–protein interactions represents a major challenge in modern drug discovery and in the development of tools for chemical biology. In recent years, fragment‐based approaches have emerged as a new methodology in drug discovery; however, few examples of small molecules that are active against chemotherapeutic targets have been published. Herein, we describe the fragment‐based approach of targeting the interaction between the tumour suppressor BRCA2 and the recombination enzyme RAD51; it makes use of a screening pipeline of biophysical techniques that we expect to be more generally applicable to similar targets. Disruption of this interaction in vivo is hypothesised to give rise to cellular hypersensitivity to radiation and genotoxic drugs. We have used protein engineering to create a monomeric form of RAD51 by humanising a thermostable archaeal orthologue, RadA, and used this protein for fragment screening. The initial fragment hits were thoroughly validated biophysically by isothermal titration calorimetry (ITC) and NMR techniques and observed by X‐ray crystallography to bind in a shallow surface pocket that is occupied in the native complex by the side chain of a phenylalanine from the conserved FxxA interaction motif found in BRCA2. This represents the first report of fragments or any small molecule binding at this protein–protein interaction site.  相似文献   

9.
Every little drop : The KD values of angiogenin (ANG) interactions as shown by FRET analysis of thousands of pL‐sized droplets agree with data from bulk‐fluorescence polarization measurements. Importantly, the use of fluorophores does not affect the activity of ANG or the binding of anti‐ANG antibodies to ANG. Such an experimental platform could be applied to the high‐throughput analysis of protein–protein interactions.

  相似文献   


10.
11.
Methods for the stabilization of well‐defined helical peptide drugs and basic research tools have received considerable attention in the last decade. Here, we report the stable and functional display of an HIV gp41 C‐peptide helix mimic on a G RAM‐L ike U biquitin‐binding in E AP45 (GLUE) protein. C‐peptide helix‐grafted GLUE selectively binds a mimic of the N‐terminal helical region of gp41, a well‐established HIV drug target, in a complex cellular environment. Additionally, the helix‐grafted GLUE is folded in solution, stable in human serum, and soluble in aqueous solutions, and thus overcomes challenges faced by a multitude of peptide drugs, including those derived from HIV gp41 C‐peptide.  相似文献   

12.
In a previous study we reported a class of compounds with a 2H‐thiazolo[3,2‐a]pyrimidine core structure as general inhibitors of anti‐apoptotic Bcl‐2 family proteins. However, the absolute stereochemical configuration of one carbon atom on the core structure remained unsolved, and its potential impact on the binding affinities of compounds in this class was unknown. In this study, we obtained pure R and S enantiomers of four selected compounds by HPLC separation and chiral synthesis. The absolute configurations of these enantiomers were determined by comparing their circular dichroism spectra to that of an appropriate reference compound. In addition, a crystal structure of one selected compound revealed the exocyclic double bond in these compounds to be in the Z configuration. The binding affinities of all four pairs of enantiomers to Bcl‐xL, Bcl‐2, and Mcl‐1 proteins were measured in a fluorescence‐polarization‐based binding assay, yielding inhibition constants (Ki values) ranging from 0.24 to 2.20 μM . Interestingly, our results indicate that most R and S enantiomers exhibit similar binding affinities for the three tested proteins. A binding mode for this compound class was derived by molecular docking and molecular dynamics simulations to provide a reasonable interpretation of this observation.  相似文献   

13.
Analysis of multiple protein–protein interactions using microarray technology remains challenging, and site‐specific immobilization of functional proteins is a key step in these approaches. Here we establish the efficient synthesis of protein–DNA conjugates for several members of a small family of GTPases. The family of Rab/Ypt GTPases is intimately involved in vesicular trafficking in yeast and serves as a model for the much larger group of analogous human proteins, the Rab protein family, with more than 60 members. The Ypt–DNA hybrid molecules described here are used for DNA‐directed immobilization on glass‐ and silica‐based microarrays. Methods for the detection of protein–DNA conjugates, as well as approaches for nucleotide exchange and distinguishing between GDP‐ and GTP‐bound Ypts on microarrays, are reported. The high specificity of different Rab/Ypt‐effector interactions, which also depends on the bound nucleotide, is shown by fluorescence readout of microarrays. Furthermore, initial experiments demonstrate that direct readout by mass spectrometry can be achieved with commercially available instruments. These developments will significantly contribute to the elucidation of complex transport networks in eukaryotic cells.  相似文献   

14.
15.
16.
Targeting important protein–protein interactions involved in carcinogenesis or targeting the cell membrane of a cancer cell directly are just two of the ways in which foldamers (oligomeric molecules that fold into distinct shapes in solution) hold considerable potential in the treatment of cancer. From mimicking the local topography of the helical compound of interest by using covalently constrained foldamers to mimicking the topography of the natural helix such that the positions of key functional motifs are in an identical spatial orientation to match those presented by the original α‐helix, synthetic foldamers have been used to mimic the natural foldamers that interact with proteins or the cell membrane. These targeted approaches have become established over a timeframe of more than a decade, and they continue to be included in the assortment of cancer targets being studied and the arsenal of chemotherapy compounds in development. These approaches are reviewed herein.  相似文献   

17.
18.
19.
Come together right now with L ‐DOPA : Chemical cross‐linking is widely used to study protein–protein interactions. However, many cross‐linking agents suffer from low reactivity or selectivity. An efficient and selective reaction of site‐specific protein cross‐linking was achieved using genetically incorporated 3,4‐dihydroxy‐L ‐phenylalanine.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号