首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Universal scaling features of polarization switching are established experimentally in rather different classes of disordered ferroelectrics: in well‐studied lead‐zirconate titanate (PZT) ferroelectrics, in recently synthesized Cu‐stabilized 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) relaxor ferroelectrics, and in classical organic ferroelectrics P(VDF‐TrFE). These scaling properties are explained by an extended concept of an inhomogeneous field mechanism (IFM) of polarization dynamics in ferroelectrics. Accordingly, disordered ferroelectrics exhibit a wide spectrum of characteristic switching times due to a statistical distribution of values of the local electric field. How this distribution can be extracted from polarization measurements is demonstrated. Generally, it is shown that the polarization response is primarily controlled by the statistical characteristics of disorder rather than by a temporal law of the local polarization switching.  相似文献   

2.
Ferroelectric polarization switching is sensitively affected by phenomena on multiple length scales, giving rise to complex voltage‐ and time‐controlled behaviors. Here, spatially resolved switching dynamics in ferroelectric nanocapacitors are explored as a function of voltage pulse time and magnitude. A remarkable persistence of formal macroscopic scaling laws for polarization switching based on classical models down to nanoscale volumes is observed. These observations illustrate the persistence of the return point memory in the material and allow the thermodynamic parameters of defects controlling switching to be estimated.  相似文献   

3.
Electric‐field control of magnetism in ferromagnetic/ferroelectric multiferroic heterostructures is a promising way to realize fast and nonvolatile random‐access memory with high density and low‐power consumption. An important issue that has not been solved is the magnetic responses to different types of ferroelectric‐domain switching. Here, for the first time three types of magnetic responses are reported induced by different types of ferroelectric domain switching with in situ electric fields in the CoFeB mesoscopic discs grown on PMN‐PT(001), including type I and type II attributed to 109°, 71°/180° ferroelectric domain switching, respectively, and type III attributed to a combined behavior of multiferroelectric domain switching. Rotation of the magnetic easy axis by 90° induced by 109° ferroelectric domain switching is also found. In addition, the unique variations of effective magnetic anisotropy field with electric field are explained by the different ferroelectric domain switching paths. The spatially resolved study of electric‐field control of magnetism on the mesoscale not only enhances the understanding of the distinct magnetic responses to different ferroelectric domain switching and sheds light on the path of ferroelectric domain switching, but is also important for the realization of low‐power consumption and high‐speed magnetic random‐access memory utilizing these materials.  相似文献   

4.
Resistive switching (RS) of (001) epitaxial multiferroic BiFeO3/La0.67Sr0.33MnO3/SrTiO3 heterostructures is investigated for varying lengths scales in both the thickness and lateral directions. Macroscale current–voltage analyses in conjunction with local conduction atomic force microscopy (CAFM) reveal that whilst both the local and global resistive states are strongly driven by polarization direction, the type of conduction mechanism is different for each distinct thickness regime. Electrode‐area dependent studies confirm the RS is dominated by an interface mechanism and not by filamentary formation. Furthermore, CAFM maps allow deconvolution of the roles played by domains and domain walls during the RS process. It is shown that the net polarization direction, and not domain walls, controls the conduction process. An interface mechanism based on barrier height and width alteration due to polarization reversal is proposed, and the role of electronic reconstruction at the interface is further investigated.  相似文献   

5.
6.
Deterministically controllable multi-state polarizations in ferroelectric materials are promising for the application of next-generation non-volatile multi-state memory devices. However, the achievement of multi-state polarizations has been inhibited by the challenge of selective control of switching pathways. Herein, an approach to selectively control 71° ferroelastic and 180° ferroelectric switching paths by combining the out-of-plane electric field and in-plane trailing field in multiferroic BiFeO3 thin films with periodically ordered 71° domain wall is reported. Four-state polarization states can be deterministically achieved and reversibly controlled through precisely selecting different switching paths. These studies reveal the ability to obtain multiple polarization states for the realization of multi-state memories and magnetoelectric coupling-based devices.  相似文献   

7.
胡岚  蒋仁培 《微波学报》2012,28(S1):347-350
本文介绍了一种适用于电捷变雷达的铁氧体锁式可变极化移相器的设计机理,利用仿真技术证明了其移相和变极化的互易性,并提供了典型器件的具体设计方法。  相似文献   

8.
The next-generation semiconductor memories are essentially required for the advancements in modern electronic devices. Ferroelectric memories by HfO2-based ferroelectric thin films (FE-HfO2) have opened promising directions in recent years. Nevertheless, improving the polarization switching speed of FE-HfO2 remains a critical task. In this study, it is demonstrated that the composition-graded Hf1-xZrxO2 (HZO) ferroelectric thin film has more than two times faster polarization switching speed than the conventional composition-uniform one. Meanwhile, it has excellent ferroelectricity and improved endurance characteristics. It is also discovered that when the HZO thin film has a gradient composition, the polarization-switching dynamics shifts from the nucleation-limited-switching mechanism to the domain-wall growth mechanism. Moreover, the transition of switching dynamics is responsible for the faster speed and better endurance of the composition-graded HZO thin film. These findings not only reveal the physical mechanisms of this material system but also provide a new strategy for memory devices having faster speed and higher endurance.  相似文献   

9.
Epitaxial tetragonal 425 and 611 nm thick Pb(Zr0.45Ti0.55)O3 (PZT) films are deposited by pulsed laser deposition on SrRuO3‐coated (100) SrTiO3 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well‐defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720–820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(01) type domain walls at the grain boundary, whereas (011)/(01) and (101)/(01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro‐electric/elastic domain structure, stabilizing (101)/(01) rather than (011)/(01) type domain walls, which inhibits domain wall motion under applied field and decreases non‐linearity.  相似文献   

10.
11.
The so‐called hybrid improper ferroelectricity (HIF) mechanism allows to create an electrical polarization by assembling two nonpolar materials within a superlattice. It may also lead to the control of the magnetization by an electric field when these two nonpolar materials are magnetic in nature, which is promising for the design of novel magneto‐electric devices. However, several issues of fundamental and technological importance are presently unknown in these hybrid improper ferroelectrics. Examples include the behaviors of its polarization and dielectric response with temperature, and the paths to switch both the polarization and magnetization under electric fields. Here, an effective Hamiltonian scheme is used to study the multiferroic properties of the model superlattice (BiFeO3)1/(NdFeO3)1. Along with the development of a novel Landau‐type potential, this approach allows to answer and understand all the aforementioned issues at both microscopic and macroscopic levels. In particular, the polarization and dielectric response are both found to adopt temperature dependences, close to the phase transition, that agree with the behavior expected for first‐order improper ferroelectrics. And most importantly, a five‐state path resulting in the switching of polarization and magnetization under an electric field, via the reversal of antiphase octahedral tiltings, is also identified.  相似文献   

12.
The nanoscale electro‐reduction in a memristive oxide is a highly relevant field for future non‐volatile memory materials. Photoemission electron microscopy is used to identify the conducting filaments and correlate them to structural features of the top electrode that indicate a critical role of the three phase boundary (electrode‐oxide‐ambient) for the electro‐chemical reduction. Based on simulated temperature profiles, the essential role of Joule heating through localized currents for electro‐reduction and morphology changes is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号