首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel insoluble bimodal porous polymer containing β‐cyclodextrin (β‐CD) was prepared to adsorb aromatic amine compound. The process involved copolymerization of styrene and methyl methacrylate with a maleic acid derivative of β‐CD, subsequently, above formed copolymer was foamed by supercritical CO2. The chemical properties and physical structure of obtained copolymer was analyzed using Fourier transform infrared spectra, Thermal gravimetric analysis, X‐ray diffraction, scanning electron microscope, and N2 adsorption techniques. The inclusion adsorption of aromatic amine compounds on β‐CD copolymer was carried out in a batch system. The quantities of aromatic amine compounds adsorbed on β‐CD copolymer reached equilibrium within 60 min. The adsorption kinetic could be fitted to a pseudo‐second‐order kinetic equation, and the linear correlation coefficients varied from 0.9828 to 0.9935. With the influence of molecular structure and hydrophobicity of the aromatic amine compound, the sequence of quantity of aromatic amine compounds adsorbed on β‐CD copolymer is p‐toluidine > aniline > benzidine > o‐toluidine. The adsorption equilibrium data of aromatic amine compound adsorbed on β‐CD copolymer were fitted to Freundlich and Langmuir models, respectively. The linear correlation coefficients of Langmuir model varied from 0.9516 to 0.9940, and the linear correlation coefficients of Freundlich varied from 0.9752 to 0.9976. It is concluded that Freundlich model fits better than Langmuir model, because the adsorption of aromatic amine compound on β‐CD copolymer is a chemical process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
BACKGROUND: Endocrine disruptors in the aquatic environment and their potential adverse effects are currently issues of concern. One of these endocrine disruptors is 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane (BPP). In this work the molecular recognition interaction of BPP with β‐cyclodextrin (β‐CD) was studied using IR spectroscopy and steady state fluorescence spectroscopy, and the photocatalytic degradation behaviour of BPP based on molecular recognition interaction was investigated in a TiO2/UV–visible (λmax = 365 nm) system. This might provide a new method for the treatment of some organic pollutants in wastewater. RESULTS: β‐CD reacts with BPP to form a 1:1 inclusion complex, the formation constant of which is 4.94 × 103 L mol?1. The photodegradation rate constant of BPP after molecular recognition by β‐CD showed a 1.42‐fold increase in the TiO2/UV–visible (λmax = 365 nm) system. The photodegradation of BPP depended on the concentration of β‐CD, the pH value, the gaseous medium and the initial concentration of BPP. The photodegradation efficiency of BPP with molecular recognition was higher than that without molecular recognition. After 100 min of irradiation the mineralisation efficiency of BPP after molecular recognition by β‐CD reached 94.8%, whereas the mineralisation efficiency of BPP before molecular recognition by β‐CD was only 40.6%. CONCLUSION: The photocatalytic degradation of BPP after molecular recognition by β‐CD can be enhanced in the TiO2/UV‐visible (λmax = 365 nm) system. This enhancement is dependent on the enhancement of the adsorption of BPP, the moderate inclusion depth of BPP in the β‐CD cavity and the increase in the frontier electron density of BPP after molecular recognition. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Surfactant adsorption onto solid surfaces is a major issue during surfactant flooding in enhanced oil recovery applications; it decreases the effectiveness of the chemical injection making the process uneconomical. Therefore, it was hypothesized that the adsorption of surfactant onto solid surfaces could be inhibited using a surfactant delivery system based on the complexation between the hydrophobic tail of anionic surfactants and β‐cyclodextrin (β‐CD). Proton nuclear magnetic resonance spectroscopy was used to confirm the complexation of sodium dodecyl sulfate (SDS)/β‐CD. Surface tension analysis was used to establish the stoichiometry of the complexation and the binding constant (Ka). Static adsorption testing was applied to determine the adsorption of surfactant onto different solids (sandstone, shale, and kaolinite). The release of the surfactant from the β‐CD cavity was qualitatively evaluated through bottle testing. The formation of the inclusion complex SDS/β‐CD with a 1:1 stoichiometry was confirmed. The Ka of the complexations increases as salinity and hardness concentration increases. The encapsulation of the surfactant into the β‐CD cavity decreases the adsorption of surfactant onto solid surfaces up to 79 %. Qualitative observations indicate that in the presence of solid adsorbents partially saturated with crude oil, the β‐CD cavity releases surfactant molecules, which migrate towards the oil–water interface.  相似文献   

4.
A novel fast and efficient adsorbent based on lamellar compound namely CeO2/Mg–Fe layered double hydroxide composite has been designed for fluoride removal from water. In order to improve fluoride removal efficiency, non-thermal plasma (NTP) was used to modify the surface state of composites. The prepared composites were characterized by powder X-ray diffraction, thermogravimetric analysis and surface area analyzer. Adsorption equilibrium and kinetics of fluoride on NTP modified composites were investigated. Experimental results indicated that the adsorption capacity was enhanced with NTP surface modification. The maximum adsorption capacity has been found to be 38.7–60.4 mg/g. The kinetic data of adsorption were found to best fit the pseudo-second-order model, while the equilibrium data were found to be well described by Langmuir model. In order to understand the mechanism of adsorption, thermodynamic parameters such as ΔGθ, ΔSθ and Ea were calculated. After NTP treatment, the ΔSθ increased from − 34.7 J/mol·K to − 0.770 J/mol·K, the Ea decreased from 78.8 kJ/mol to 58.9 kJ/mol and the ΔGθ (25 °C) decreased from − 2.62 kJ/mol to − 3.14 kJ/mol. These values indicate that the fluoride adsorption on NTP modified composites was improved.  相似文献   

5.
Because of low aqueous solubility and slow dissolution rate, cantharidin has a low oral bioavailability. Our research aims to prepare the inclusion complex of cantharidin and β‐cyclodextrin (β‐CD) and accomplish characterization, in vitro and in vivo evaluation. CA‐β‐CD inclusion complex was prepared by saturated solution method. The CA was demonstrated by HPLC in vitro experiment and by GC‐MS in vivo experiment. CA‐β‐CD inclusion complex was characterized by differential scanning calorimetry (DSC), X‐ray diffractometry (XRD), and nuclear magnetic resonance (NMR). Through complexation with β‐CD, the solubility of CA in neutral aqueous solution was improved significantly. CA‐β‐CD inclusion complex also shows a significantly improved dissolution rate in comparison with free CA. Comparison of the pharmacokinetics between CA‐β‐CD inclusion complex and free CA was performed in rats. The in vivo results show that CA‐β‐CD inclusion complex has earlier tmax, higher Cmax, and higher bioavailability than free CA after oral dosing. By comparing the AUC0–t of CA and CA‐β‐CD inclusion complex, the relative bioavailability of CA‐β‐CD inclusion complex to free CA was 506.3%, which highlighted the evidence of significantly improved bioavailability of formulation of CA with β‐CD. Thus, this β‐CD‐based drug delivery system should be an effective oral dosage form to improve oral bioavailability of CA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Novel well‐defined amphiphilic fluorinated diblock copolymers P(PEGMA‐co‐MMA)‐b‐PC6SMA were synthesized successfully by RAFT polymerization and characterized by FTIR, 1HNMR and GPC. For copolymer coatings, static contact angles, θ, with water (θwater ≥ 109.5°) and n‐hexadecane (θhexadecane ≥ 68.9°) pointed to the simultaneous hydrophobic and lipophobic characteristics of the copolymer surfaces. Dynamic contact angle measurements indirectly demonstrated that copolymer films underwent surface reconstruction upon contact with water, which results in a surface with surface coverage of polar PEG units. Moreover, the distinct nanoscale microphase segregation structures were proved by atomic force microscopy (AFM) images. Finally, using bovine serum albumin (BSA–FITC) as the model protein, copolymers exhibited excellent protein adsorption resistance. It is believed that the combination of surface reorganization and nanometer‐scale microphase segregation structure endows the excellent protein resistance for amphiphilic fluorinated copolymers. These results provide deeper insight of the effect of surface reconstruction and microphase segregation on the protein adsorption behaviors, and these amphiphilic fluoropolymers can expect to have potential applications as antifouling coatings in the field of marine and biomedical. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41167.  相似文献   

7.
The inclusion complex formed by β‐cyclodextrin (β‐CD) with the cationic surfactant hexadecyltrimethylammonium chloride (HTAC) was studied by viscometry using poly(ethylene oxide) (PEO)–HTAC aggregates as a viscosity indicator. The relative viscosity of β‐CD in aqueous PEO–HTAC solution profiles shows that the formation of the β‐CD/HTAC inclusion complex causes HTAC molecules to be stripped off the PEO chains, resulting in a decrease of aqueous solution viscosity as a result of the decrease in electrostatic repulsion between polymer‐bound HTAC micelles. The viscosity minimum at Cβ‐CD/CHTAC = 0.5 indicates that the molecular ratio of host molecule to guest molecule is 1:2 in the β‐CD/HTAC inclusion complex.  相似文献   

8.
Uniformity of change in catalyst activity during a multi-pulse TAP experiment with porous catalyst was theoretically analyzed for a TAP reactor with the ratio of the catalyst bed thickness to the reactor length of 1/30. The analysis was performed by simulation of an irreversible adsorption process. The catalyst change is described by the change in the occupied/unoccupied fractional surface coverages. The intraparticle uniformity is indicated by a small magnitude of Δθ p,max , the maximum difference between the occupied fractional surface coverages at the outermost and the innermost of the catalyst pellet during the multi-pulse experiment. In the interparticle region, the indicating quantity is Δθ b,max , the maximum difference between the pellet-outermost fractional surface coverages at the inlet and the outlet of the catalyst bed. It was found that Δθ p,max generally depends only on the effectiveness factor in the first pulse experiment, η. For η ≥ 0.94, Δθ p,max  ≤ 0.05. In addition, Δθ b,max depends only on the gas conversion in the first pulse experiment, X. For X ≤ 0.7, Δθ b,max  ≤ 0.05.  相似文献   

9.
The thermodynamic properties of 76 polychlorinated dihydrophezines (PCDPs) in the gaseous state at 298.15 K and 101.325 kPa, have been calculated using the density functional theory (the BHANDHLYP/6‐31G*) with Gaussian 03 program. Based on these data, the isodesmic reactions were designed to calculate the standard formation heat (ΔfHθ), standard Gibbs free energy of formation (ΔfGθ) of PCDPs in the gaseous state. The relations of these thermodynamic parameters with the number and position of chlorine substituents (NPCS) were discussed, and it was found that there exist good correlation between thermodynamic parameters, including heat capacity at constant volume , entropy (Sθ), enthalpy (Hθ), free energy (Gθ), ΔfHθ, ΔfGθ, and NPCS. The relative stability order of PCDP congeners was theoretically proposed based on the relative magnitude of their ΔfGθ. In addition, the values of molar heat capacity at constant pressure (Cp,m) for PCDP congeners have been calculated.  相似文献   

10.
A reliable simple method for prediction of the standard Gibbs energy of formation (ΔfGθ) of energetic compounds containing nitroaromatic, acyclic, and cyclic nitramine, nitrate ester, and nitroaliphatic compounds is introduced herein. The method is based on the contribution of elemental composition (ΔfGelemθ) and the correcting function for the presence of additive and non‐additive molecular fragments (ΔfGcorrθ). In presence of some molecular moieties, ΔfGcorrθ may increase or decrease the value of ΔfGelemθ, depending on the intermolecular interactions. The experimental root‐mean‐square error (RMSE) of the novel correlation (22.7 kJ mol−1) is quite good. For some energetic compounds, where the computed values of two complex models of the quantitative structure‐property relationship (QSPR) theory were available, the experimental RMSE developed by the new method is smaller than the values obtained by QSPR method.  相似文献   

11.
In this article, an ionic imprinted polyamine (IIP) grafted on the surface of silica gel was prepared through a new surface imprinting approach. The adsorption and recognition properties of IIP‐PEI/SiO2 for Pb2+ ion were studied in detail using batch rebinding studies. The experimental results showed that the IIP‐PEI/SiO2 had high affinity, specificity, and selectivity for the template ion. The isothermal adsorption data was fit using the Langmuir equation. The adsorption was typical of chemisorption of a monolayer. The selectivity coefficients relative to Zn2+ and Cr3+ were 32.43 and 68.36, respectively. pH and temperature were found to have a strong influence on the adsorption properties. The adsorption amount increases with rising of temperature and the value of ΔH is plus. The adsorption of Pb2+ by IIP‐PEI/SiO2 was spontaneous and endothermic. At pH = 7, the adsorption capacity of the polymers was the highest. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
In this study, β‐cyclodextrin (β‐CD) was covalently grafted on hydroxyapatite (HA) using a coupling agent to improve the drug loading capacity and prolong the drug release. The binding of β‐CD on the HA surface was confirmed by Fourier transformation infrared spectroscopy, thermal gravimetric analysis, and X‐ray powder diffraction. The adsorption capacity of ofloxacin on β‐CD‐grafted hydroxyapatite (β‐CD‐g‐HA) composite was found to be 30 mg g?1 at 37°C and 24 h. The adsorption process is spontaneous, given the negative values of free energy change. Compared with the release of ofloxacin loaded on HA, the release of ofloxacin loaded on β‐CD‐g‐HA was slowed down 28% and 21% in pH 2.0 and pH 7.4 buffer media at 2 h, respectively. Biocompatibility of β‐CD‐g‐HA was assessed by MTT assay, and the result showed that it had no cytotoxicity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
At different surface coverages (θs), the dispersion component (ΔFdisp) and specific components (induction and orientation interactions; ΔFio and donor‐acceptor interactions; ΔFda) of the sorption free energy and the polarities were calculated for three porous polymers: the microporous styrene–divinylbenzene copolymer Dowex L‐285, the microporous hypercrosslinked polystyrene MN‐200, and the macroporous styrene–divinylbenzene copolymer Polysorb‐1. Two methods were used to calculate ΔFdisp, ΔFio and ΔFda: the linear free energy relationship method and the Dong polarization method. For styrene–divinylbenzene sorbents, ΔFdisp decreased with θ, whereas ΔFio and ΔFda increased; this caused the polarity to rise. This phenomenon was caused by the sorbat–sorbat lateral interactions on the polymer's surface; these were stronger for polar molecules. In the case of hypercrosslinked polystyrene, ΔFdisp and ΔFio varied equally, and the polarity was almost constant. This trend could be explained by the absorption of the molecules into the bulk of the polymer; this prevented lateral interactions. We concluded that the lateral interactions were a function of the porous polymer's surface properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44146.  相似文献   

14.
《分离科学与技术》2012,47(10):1463-1470
The present study deals with the removal of phosphates from aqueous solution using activated carbon developed from coir pith. Batch adsorption experiments were performed to delineate the effect of initial pH, contact time, adsorbent dose and temperature on the removal of phosphates by coir-pith activated carbon (CAC) (activated by H2SO4). The removal was found to be maximum in the pH range of 6–10. The kinetics of adsorption showed that the phosphate adsorption onto CAC was a gradual process with a quasi-equilibrium being attained in 3 h. The adsorption equilibrium data followed the Temkin isotherm. Thermodynamic parameters such as ΔG o , ΔH o , and ΔS o were evaluated by applying the Arrhenius and van't Hoff equations, and it was found that the adsorption of phosphate on CAC was spontaneous and endothermic.  相似文献   

15.
Our previous work has reported that an inorganic nano-network of palygorskite with multiporous structure can be fabricated from rigid nano-rods by ion beam bombardment and has better adsorption capability than nano-rods. Here, this dispersed modified nano adsorbent was characterized by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscope (SEM). The adsorption property of methylene blue (MB) onto this adsorbent was investigated. It was found that the adsorption capacity increased with contact time, pH, MB initial concentration, respectively, and then reached an equilibrium. Moreover, the effect of pH on the adsorption was strongly determined by zeta potential. The adsorption kinetics of MB was dominated by the pseudo-second-order reaction model, and the adsorption isotherms fit the Freundlich isotherms better than the Langmuir isotherms. Three temperatures (293 K, 303 K, 313 K) were set for describing the thermodynamic parameters (ΔHθ, ΔSθ, and ΔGθ), which indicated that the adsorption was spontaneous and exothermic. Lastly, the mechanism of the influence of ionic strength on the adsorption was discussed.  相似文献   

16.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

17.
18.
A facile, novel, and cost‐effective alkaline hydrolysis process of cinnamaldehyde to benzaldehyde under rather mild conditions has been investigated systematically in the presence of β‐cyclodextrin (β‐CD), with water as the only solvent. β‐CD could form inclusion complex with cinnamaldehyde in water, with molar ratio of 1:1, so as to promote the reaction selectivity. The complex has been investigated experimentally and with computational methods. 1H‐NMR, ROESY, UV–Vis, and FTIR have been utilized to analyze the inclusion complex. It shows that the equilibrium constant for inclusion (Ka) is 363 M?1, and the standard Gibbs function for the reaction, ΔγG (298 K), is ?14.6 kJ mol?1. In addition, the structures of the proposed inclusion compounds were optimized with hybrid ONIOM theory. Benzaldehyde could be obtained at an yield of 42% under optimum conditions [50°C, 18 h, 2% NaOH (w/v), cinnamaldehyde:β‐CD (molar ratio) = 1:1]. To explain the experimental data, NMR, FTIR, and elemental analysis results were used to determine the main reaction by‐product 1‐naphthalenemethanol. A feasible reaction mechanism including the retro‐Aldol condensation of cinnamaldehyde and the Aldol condensation of acetaldehyde and cinnamaldehyde in basic aqueous β‐CD solution has been proposed. The calculated activation energy for the reaction was 45.27 kJ mol?1 by initial concentrations method. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

19.
A novel ion‐imprinted polymer (IIP) using (6‐O‐butene diacid ester)‐β‐cyclodextrin (β‐CD‐MAH) as the functional monomer and copper ions as the template was developed for Cu2+ sensing. First, reactive β‐cyclodextrin (β‐CD) monomers with vinyl carboxylic acid functional groups were synthesised and were co‐polymerised with styrene via radical polymerisation. Then, the β‐CD copolymers were complexed with Cu2+ in order to obtain the IIP. The imprinting effect was realised by removing the template ions from the imprinted polymer. The structure, composition and morphology of the IIP were characterised by Fourier transform IR spectroscopy, energy‐dispersive spectroscopy and field‐emission SEM. The adsorption capacity was investigated by UV–visible spectroscopy in batch operation mode. The maximum adsorption capacity for the Cu2+ template ions was 28.91 mg g?1, and the adsorption selectivity was clearly illustrated from the increased sorption affinity towards Cu2+ ions over other competing ions. The adsorption was affected by the pH of the aqueous medium, and enhanced adsorption capacity was observed at pH 5. The prepared IIP could be used 10 times after its regeneration without significant loss of the adsorption capacity. © 2018 Society of Chemical Industry  相似文献   

20.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号