首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both liquid‐ and solid‐state carbon‐13–nuclear magnetic resonance (13C‐NMR) spectroscopies were used to investigate the cure acceleration effects of three carbonates (propylene carbonate, sodium carbonate, and potassium carbonate) on liquid and cured phenol‐formaldehyde (PF) resins. The liquid‐phase 13C‐NMR spectra showed that the cure acceleration mechanism in the propylene carbonate‐added PF resin seemed to be involved in increasing reactivity of the phenol rings, whereas the addition of both sodium carbonate and potassium carbonate into PF resin apparently resulted in the presence of orthoortho methylene linkages. Proton spin‐lattice rotating frame relaxation time (TH) measured by solid‐state 13C cross polarization/magic‐angle spinning NMR spectroscopy was smaller for the cure‐accelerated PF resins than that of the control PF resin. The result indicated that the cure‐accelerated PF resins are less rigid than the control PF resin. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1284–1293, 2000  相似文献   

2.
Both liquid‐ and solid‐state 13C‐NMR spectroscopies were employed to investigate the cure‐acceleration effects of three carbonates [propylene carbonate (PC), sodium carbonate (NC), and potassium carbonate (KC)] on liquid and cured phenol–formaldehyde (PF) resins. The liquid‐phase 13C‐NMR spectra showed that the cure‐acceleration mechanism in the PC‐added PF resin seemed to be involved in increasing reactivity of the phenol rings, while the addition of both NC and KC into PF resin apparently resulted in the presence of orthoortho methylene linkages. Proton spin‐lattice rotating frame relaxation time (TH) measured by solid‐state 13C‐CP/MAS‐NMR spectroscopy was smaller for the cure‐accelerated PF resins than for that of the control PF resin. The result indicated that cure‐accelerated PF resins are less rigid than the control PF resin. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 841–851, 2000  相似文献   

3.
Particleboards bonded with 6 and 12% melamine‐modified urea‐formaldehyde (UMF) resins were manufactured using two different press temperatures and press times and the mechanical properties, water resistance, and formaldehyde emission (FE) values of boards were measured in comparison to a typical urea‐formaldehyde (UF) resin as control. The formaldehyde/(urea + melamine) (F/(U + M)) mole ratio of UMF resins and F/U mole ratio of UF resins were 1.05, 1.15, and 1.25 that encompass the current industrial values near 1.15. UMF resins exhibited better physical properties, higher water resistance, and lower FE values of boards than UF resin control for all F/(U + M) mole ratios tested. Therefore, addition of melamine at these levels can provide lower FE and maintain the physical properties of boards. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
In this study, alkaline lignin (AL), dealkaline lignin (DAL), and lignin sulfonate (SL) were liquefied in phenol with sulfuric acid (H2SO4) or hydrochloric acid (HCl) as the catalyst. The phenol‐liquefied lignins were used as raw materials to prepare resol‐type phenol‐formaldehyde resins (PF) by reacting with formalin under alkaline conditions. The results show that phenol‐liquefied lignin‐based PF resins had shorter gel time at 135°C and had lower exothermic peak temperature during DSC heat‐scanning than that of normal PF resin. The thermo‐degradation of cured phenol‐liquefied lignin‐based PF resins was divided into four temperature regions, similar to the normal PF resin. When phenol‐liquefied lignin‐based PF resins were used for manufacturing plywood, most of them had the dry, warm water soaked, and repetitive boiling water soaked bonding strength fitting in the request of CNS 1349 standard for Type 1 plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Urea‐formaldehyde (UF) resins present a swollen colloidal phase dispersed within a continuous water phase containing soluble oligomers. The main goal of the present investigation is to clarify the physical and chemical nature of those two phases and elucidate their impact on the bonding process. Optical and electronic microscopy has provided information on the morphology of the colloidal phase, showing primary particles and particle agglomerates. Mechanisms are suggested for the colloidal stabilization and dilution‐induced flocculation. Three commercial UF resins with different F/U molar ratios were studied using particle size distribution (PSD) analysis. The results showed the influence of the resin's degree of condensation and the aging status on the size of the colloidal structures. Gel permeation chromatography analysis was performed on samples of different resins and of the respective continuous and dispersed phases, separated by centrifugation. The quantified fraction of insoluble molecular aggregates present in the chromatograms was related to the resins synthesis conditions and age. Differential scanning calorimetry and tensile shear strength tests were performed to evaluate the reactivity and adhesive performance of each phase. It is suggested that the colloidal phase acts as a reactive filler at the wood joint interfaces, contributing for the resins bonding performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The favored pH ranges for the formation of urons in urea‐formaldehyde (UF) resins preparation were determined, these being at pH's higher than 6 and lower than 4 at which the equilibrium urons ↔ N,N′‐dimethylol ureas are shifted in favor of the cyclic uron species. Shifting the pH slowly during the preparation from one favorable range to the other causes shift in the equilibrium and formation of a majority of methylol ureas species, whereas a rapid change in pH does not cause this to any great extent. UF resins in which uron constituted as much as 60% of the resin were prepared and the procedure to maximize the proportion of uron present at the end of the reaction is described. Uron was found to be present in these resins also as linked by methylene bridges to urea and other urons and also as methylol urons, the reactivity of the methylol group of this latter having been shown to be much lower than that of the same group in methylol ureas. Thermomechanical analysis (TMA) tests and tests on wood particleboard prepared with uron resins to which relatively small proportions of urea were added at the end of the reaction were capable of gelling and yielding bonds of considerable strength. Equally, mixing a uron‐rich resin with a low F/U molar ratio UF resin yielded resins of greater strength than a simple UF of corresponding molar ratio indicating that UF resins of lower formaldehyde emission with still acceptable strength could be prepared with these resins. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 277–289, 1999  相似文献   

7.
A two‐level full factorial experimental design with three variables, formaldehyde‐to‐phenol (F/P) molar ratio, hydroxyl‐to‐phenol (OH/P) molar ratio, and condensation viscosity was implemented to determine the effect of the variables on the structure of phenol‐formaldehyde resol resins for paper overlay impregnation. Ten resins were prepared with F/P molar ratios between 1.9 and 2.3, OH/P molar ratios between 0.09 and 0.13, and condensation viscosities between 60 and 180 mPa s. The effect of these three independent variables on the chemical structure was analyzed by 13C‐NMR spectroscopy, on the molecular weight distribution by gel permeation chromatography, and on the reactivity by differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2942–2948, 2004  相似文献   

8.
Melamine can be incorporated in the synthesis of urea‐formaldehyde (UF) resins to improve performance in particleboards (PB), mostly in terms of hydrolysis resistance and formaldehyde emission. In this work, melamine‐fortified UF resins were synthesized using a strong acid process. The best step for melamine addition and the effect of the reaction pH on the resin characteristics and performance were evaluated. Results showed that melamine incorporation is more effective when added on the initial acidic stage. The condensation reaction pH has a significant effect on the synthesis process. A pH below 3.0 results on a very fast reaction that is difficult to control. On the other hand, with pH values above 5.0, the condensation reaction becomes excessively slow. PBs panels produced with resins synthesized with a condensation pH between 4.5 and 4.7 showed good overall performance, both in terms of internal bond strength and formaldehyde emissions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Syntheses of urea–melamine–formaldehyde (UMF) resins were studied using 2–12% melamine levels and UF base resins that were preadvanced to various different extents. The melamine reaction was carried out at pH 6.3 with F/(U + M) mole ratio of 2.1 until a target viscosity of V was reached (Gardener–Holdt) and then the second urea added at pH 8.0 to give a final F/(U + M) mole ratio of 1.15. Analyses with 13C‐NMR and viscosity measurements showed that MF components react fast and the UF components very slowly in the melamine reaction. Therefore, as the extent of preadvancement of UF base resin was decreased, the reaction time to reach the target viscosity became longer and the MF resin components showed high degrees of polymerization. The overpolymerization of MF components resulted in increasingly more opaque resins, with viscosity remaining stable for more than a month. As the preadvancement of UF base resin was increased, the extent of advancement of MF components decreased, to give clearer resins, with viscosity slowly increasing at room temperature. Overall, preadvancing the UF base resin components to an appropriate extent was found to be a key to synthesizing various low‐level melamine‐modified UMF resins. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2559–2569, 2004  相似文献   

10.
The hot pressing operation is the final stage in MDF (medium density fiberboard) manufacture; the fiber mat is compressed and heated up to promote the cure of the resin. The aim of the investigations is to study the curing reactions of UF (Urea–Formaldehyde) resins as commonly used in the production of MDF, and to develop a simplified kinetic model. This investigation has combined Raman spectroscopy to study the reaction cure and 13C‐NMR for the quantitative and qualitative characterization of the liquid and still uncured resin. Raman spectroscopy was found very interesting for the study of the resin cure and permitted to obtain kinetic data as the basis for a simple empirical model, considering a homogeneous irreversible reaction of a single kind of methylol group and ureas with rate constants depending on their degree of substitution. Although these results can provide a better understanding of the composition and the cure of an UF resin, several issues remain open, such as the influence of the reversibility of the reactions taking place during the curing process as well as the possible formation of cyclic groups in the resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5977–5987, 2006  相似文献   

11.
The effects of posttreatments of particleboard adhesive‐type urea–formaldehyde resins were studied. The resins were synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.40, 1.60, 1.80, 2.10, and 2.40 and then the second urea was added to give a final formaldehyde/urea ratio of 1.15 in alkaline pH. The resins were posttreated at 60°C for up to 13.5 h and the 2.5‐h heat‐treated resin samples were stored at room temperature for up to 27 days. Resins sampled during the posttreatments were examined by 13C‐NMR and evaluated by bonding particleboards. In the posttreatments, hydroxymethyl groups on the polymeric resin components dissociated to formaldehyde and reacted with the second urea, and methylene and methylene–ether groups were formed from reactions involving the second urea. Methylene–diurea and urea groups bonded to UF polymers were identified. As a result, the viscosity of the resins initially decreased but later increased along with the cloudiness of the resins. Bond‐strength and formaldehyde‐emission values of particleboard varied with posttreatment variables as well as with the F/U1 mol ratios used in the resin syntheses. The results would be useful in optimizing resin synthesis and handling parameters. Various reaction mechanisms were considered. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1896–1917, 2003  相似文献   

12.
A particleboard adhesive‐type urea–formaldehyde (UF) resin was made at a formaldehyde ratio of 2.10 and added with a second urea at low temperature to the typical final formaldehyde/urea ratio of 1.15. Time samples taken during heat treatments of the resin sample up to 70°C over a period of 250 min showed decreases in Type II/IIi hydroxymethyl group content, accompanied with decreases in resin sample viscosity and increases in formaldehyde emission of bonded particleboards. The results indicate that various hydroxymethyl groups of polymeric UF resin components migrate to the second urea to form Type I hydroxymethyl groups. Time samples taken during the room‐temperature storage of the resin sample over a period of 1 month behaved similarly initially, but in the later stage, some polymerization progressed, shown by increases in viscosity and methylene and methylene–ether group contents. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1243–1254, 2000  相似文献   

13.
Effects of resin formulation, catalyst, and curing temperature were studied for particleboard binder‐type urea‐formaldehyde (UF) and 6 ~ 12% melamine‐modified urea‐melamine‐formaldehyde (UMF) resins using the dynamic mechanical analysis method at 125 ~ 160°C. In general, the UF and UMF resins gelled and, after a relatively long low modulus period, rapidly vitrified. The gel times shortened as the catalyst level and resin mix time increased. The cure slope of the vitrification stage decreased as the catalyst mix time increased, perhaps because of the deleterious effects of polymer advancements incurred before curing. For UMF resins, the higher extent of polymerization effected for UF base resin in resin synthesis increased the cure slope of vitrification. The cure times taken to reach the vitrification were longer for UMF resins than UF resins and increased with increased melamine levels. The thermal stability and rigidity of cured UMF resins were higher than those of UF resins and also higher for resins with higher melamine levels, to indicate the possibility of bonding particleboard with improved bond strength and lower formaldehyde emission. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 377–389, 2005  相似文献   

14.
Effects of adding urea to the strand board core‐layer phenol–formaldehyde (PF) resin were investigated in conjunction with cure‐accelerating catalysts. Ten percent urea based on the liquid resin weight was added at the beginning, at three different middle stages of polymerization, and at the end of PF resin synthesis. No significant cocondensation between the urea and PF resin components occurred as identified by 13C NMR analyses, which corroborated well with the curing and strand board bonding performance test results. The various urea addition methods resulted in resins that slightly differ in the various tests due to the urea's temporary holding capacity of formaldehyde. The preferred method of urea addition was found to do it in the later part of PF resin synthesis for convenience, consistency, and slightly better overall performance. Some cure‐accelerating catalysts were shown to reduce the thickness swelling of strand boards. This study showed the usefulness of adding some urea to strand board core‐layer binder PF resins of replacing higher cost phenolic components with lower cost urea. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Guanidine carbonate is shown to be an accelerator of phenol‐formaldehyde (PF) resins that while yielding slightly slower gel times than triacetin when added to a PF resin glue mix, is also capable of giving glue‐mix pot lives on the order of several days. Hence, this is long enough to be premixed with the resin long before use. Both triacetin and guanidine carbonate used as simple glue‐mix additives are shown to increase the ultimate strength of the resin bond, whatever the length of the curing time used for the purpose. This is shown by thermomechanical analysis and the application to wood particleboard. Triacetin is shown to be usable during PF resin preparation rather than just being added to the glue mix, yielding better resins capable of giving higher bond values without a great acceleration of the geling of the resin itself. The mechanisms involved in the acceleration of PF resins introduced by both compounds appears to be based on facilitating reactions of crosslinking involving carbonic acid ions present in the resin solution. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 249–259, 2000  相似文献   

16.
Typical particleboard wood‐adhesive urea–formaldehyde (UF) resins, synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.80, 2.10, and 2.40 and the second urea added to an overall F/U ratio of 1.15, in weak alkaline pH, were allowed to stand at room temperature over a period of 50 days. 13C‐NMR of time samples taken over the storage period showed gradual migration of hydroxymethyl groups from the polymeric first‐urea components to the monomeric second‐urea components and also an advancing degree of polymerization of resins by forming methylene and methylene ether groups involving the second urea. These phenomena that varied with the F/U1 mol ratios used in the resin syntheses due to the varying polymer branching structures resulted in the first step of resin synthesis. Varying viscosity decreases and increases of the resins also occurred. Due to these chemical and physical changes, the particleboards that bonded with the sampled resins showed varying bond strength and formaldehyde‐emission values, indicating process optimizations possible to improve bonding and formaldehyde‐emission performances. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1155–1169, 2001  相似文献   

17.
Phenol–urea–formaldehyde (PUF) resins were synthesized by a two‐step polymerization process. The first step was the synthesis of 2,4,6‐trimethylolphenol (TMeP) from phenol and formaldehyde, under alkaline conditions. In the second step PUF resins were synthesized by the reaction of TMeP with urea, under acidic and alkaline conditions. The influence of temperature on the synthesis of TMeP was investigated. The molar ratio between TMeP and urea was varied to study the composition effect on the second step of the PUF synthesis and final product properties. Synthesis of TMeP and PUF resins were monitored by inline FTIR‐ATR system. Analytical methods, such as differential scanning calorimetry, nuclear magnetic resonance, thermogravimetric analysis, and infrared spectroscopy were used for characterization of TMeP and PUF resins. Obtained PUF resins were cured and tested on flexural strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

18.
The acid curing agent content and foaming temperature could be reduced by improving the resol reactivity. In this study, highly active and solid phenol?resorcinol?formaldehyde copolymer resins (PRFRs) with different resorcinol/phenol (R /P ) molar ratios and formaldehyde/(phenol + resorcinol) [F /(P + R )] molar ratios were synthesized through the copolymerization of resorcinol, formaldehyde, and phenol. Phenol?resorcinol?formaldehyde foams (PRFFs) were prepared with synthetic PRFRs. The results showed that PRFR‐2 exhibited higher reactivity, faster curing speed, and better thermal stability. In addition, the foam produced with the PRFR‐2 had improved mechanical and flame retardation properties and a compressive strength of 0.18 MPa, a flexural strength of 0.25 MPa, and a limited oxygen index (LOI) greater than 37%. The increased reactivity of the PRFRs correlated with the changing mechanical properties of PRFFs because of the effects of resorcinol and the molar ratio of formaldehyde to phenol and resorcinol. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44881.  相似文献   

19.
The preparation of an industrially used sequential formulation of a melamine–urea–formaldehyde resin was followed by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and 13C‐NMR analysis. The analysis allowed us to identify and follow the appearance, increase, decrease, and disappearance of a multitude of chemical species during the preparation of both the initial urea–formaldehyde (UF) phase of the reaction and the subsequent reaction of melamine with the UF resin that formed. The analysis indicated that (1) the increase and decrease in the species that formed proceeded through a cycle of the formation and degradation of species occurring continuously through what appeared to be a series of complex equilibria, (2) even at the end of the reaction a predominant proportion of methylene ether bridges was still present, (3) some small proportion of methylene bridges already had formed in the UF reaction phase of the resin even under rather alkaline conditions, and (4) the addition of melamine to the UF prepolymer induced some noticeable rearrangement of methylene ether bridges to methylene bridges. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
A new synthetic strategy for PUF copolymers based on three steps was developed. In the first step, two precondensates of phenol with formaldehyde and urea with formaldehyde, respectively, were produced. In the second step, the two precondensates were mixed and condensed using a heterogeneous catalyst in a tube reactor at 90°C. The last step is a vacuum distillation to reach the final copolymer compositions. With regard to the properties, the products can be used as adhesive. The copolymers were analysed by gel permeation chromatography (GPC), 13C‐NMR‐spectroscopy, and MALDI‐TOF mass spectrometry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2946–2952, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号