首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, dual compatibilizers composed of the commercially available maleic anhydride‐grafted polypropylene (PP–MA) and a multifunctional epoxy resin were demonstrated to effectively compatibilize the immiscible and incompatible blends of PP and poly(butylene terephthalate) (PBT). The PP–MA with a low MA content is totally miscible with PP to make the PP phase quasi‐functionalized, so that the multifunctional epoxy has the chance to react with PBT and PP–MA simultaneously to form PP–MA‐co‐epoxy‐co‐PBT copolymers at the interface. These desired copolymers are able to anchor along the interface and serve as efficient compatibilizers. The compatibilized blends, depending on the quantity of dual compatibilizers employed, exhibit higher viscosity, finer phase domain, and improved mechanical properties. Epoxy does not show compatibilization effects for the PP/PBT blends without the presence of PP–MA in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2272–2285, 2001  相似文献   

2.
Polypropylene (PP)/polystyrene‐block‐poly(ethylene‐co‐butylenes)‐block‐polystyrene (SEBS)/organo‐montmorillonite (OMMT) nanocomposites of varying concentrations of maleic anhydride‐grafted polypropylene (PP‐g‐MA) were prepared by continuous mixing assisted by ultrasonic oscillation. The structure and morphology of nanocomposites were investigated by X‐ray diffraction (XRD), transmission electron microscopy, and scanning electron microscopy. It was found that both PP‐g‐MA and ultrasonic oscillation could enhance the intercalation and exfoliation of OMMT in PP matrix. Meanwhile, the formation of PP could be induced by ultrasonic irradiation at a power of more than 540 W. Rheological properties including complex viscosity, storage, and loss modulus of nanocomposites were increased after adding PP‐g‐MA or ultrasonic treatment. The results of mechanical properties showed that PP‐g‐MA could improve the tensile strength and tensile modulus of nanocomposites, but with the sacrifice of impact strength. This problem could be improved by ultrasound due to the reduced particle size of SEBS. However, the mechanical properties would be reduced by ultrasonic treatment with higher intensity due to the polymer degradation. Therefore, the synergistic effect of both compatibilizer and ultrasound should account for the balance between toughness and stiffness of PP/SEBS/OMMT ternary nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41202.  相似文献   

3.
In attempts to improve the compatibility of polypropylene (PP) with polyethylene terephthalate (PET), a maleic anhydride grafted PP (PP‐g‐MA) was evaluated as a compatibilizer in a blend of 30/70 wt % PP/PET. PP‐g‐MA was produced from isotactic homopolymer PP utilizing the technique of solid phase graft copolymerization. Qualitative confirmations of the grafting were made by Fourier transform infrared spectroscopy (FTIR). Three different weight percent of compatibilizer, PP‐g‐MA, i.e., 5, 10, and 15 wt % have been used in PP/PET blends. The compatibilizing efficiency for PP/PET blend was examined using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM) of crycrofractured surfaces, and energy dispersive X‐ray spectrum (EDAX). The results show that the grafted PP promotes a fine dispersed phase morphology, improves processability, and modifies the crystallization behavior of the polyester component. These effects are attributed to enhance phase interaction resulting in reduced interfacial tension. Also, the results show that the compatibilizing effects of the three amounts of grafted PP in blend are different and dependent on the amount used. Adding 10 wt % of compatibilizer into blend produced the finest dispersed morphology. Elemental analysis results show that PP is matrix. DSC determination revealed that the melting temperature (Tm) of the PET component declined to some extent by comparison with neat PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3986–3993, 2007  相似文献   

4.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

5.
Copolypropylene/organoclay nanocomposites are prepared by melt intercalation method in this research. Two different routes for addition of compatibilizer are examined, i.e. addition in the twin‐screw extruder along with the polymer and the clay powder simultaneously and premixing the compatibilizer with the reinforcement in a batch mixer before addition to the polypropylene (PP) matrix. Morphology, tensile and impact properties and deformation mechanisms of the samples made via two procedures are studied and compared with those of the noncompatibilized system. To study the structure of nanocomposites, x‐ray diffraction and transmission electron microscopy techniques are utilized. The deformation mechanisms of different samples are examined via reflected and transmitted optical microscopy. The results reveal that introduction of compatibilizer and also the procedure in which the compatibilizer is added to the compound, affect structure and mechanical properties of nanocomposite. The elastic modulus of PP‐clay nanocomposite has increased 11.5% with incorporation of compatibilizer. Also, introduction of organoclay without compatibilizer facilitates crazing at the notch tip of PP in 3PB testing. Incorporation of compatibilizer, however, makes difficulties in initiation and growth of crazes at the notch tip. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
In this study, miscibility/immiscibility issues of a binary blend consisting of polypropylene (PP) and acrylic acid grafted polypropylene (PP‐g‐AA) were investigated using rheometry, DSC, dynamic mechanical and thermal analysis (DMTA), AFM and time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS). Phase separation analysis of such blend systems is a challenge and complex due to chemically similar components as well as the low value of acrylic acid groups in the graft copolymer. Thus, it is crucial to determine if the present blend shows some degree of miscibility or develops co‐continuous morphology between the components. The analysis of rheometrical, DSC and DMTA results indicated no sensitivity of these classical techniques for detecting the miscibility or immiscibility of such a system. However, AFM data effectively detected dispersed‐phase domains corresponding to the PP‐g‐AA rich phase. The results, for the first time, indicated that the start of phase separation occurs at a critical copolymer concentration between 2 and 5 wt%. Furthermore it was observed that, as the PP‐g‐AA content increases, the size and continuity of the dispersed phase increase and reach a highly continuous morphology. Additionally, ToF‐SIMS chemical imaging was carried out to aid in the interpretation of the AFM data. © 2016 Society of Chemical Industry  相似文献   

7.
This work aimed at studying the role of poly(phenylene oxide) (PPO) and polystyrene (PS) in toughening polyamide‐6 (PA6)/styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (SEBS‐g‐MA) blends. The effects of weight ratio and content of PPO/PS on the morphology and mechanical behaviors of PA6/SEBS‐g‐MA/(PPO/PS) blends were studied by scanning electron microscope and mechanical tests. Driving by the interfacial tension and the spreading coefficient, the “core–shell” particles formed by PPO/PS (core) and SEBS‐g‐MA (shell) played the key role in toughening the PA6 blends. As PS improved the distribution of the “core–shell” particles due to its low viscosity, and PPO guaranteed the entanglement density of the PPO/PS phase, the 3/1 weight ratio of PPO/PS supplied the blends optimal mechanical properties. Within certain range, the increased content of PPO/PS could supply more efficient toughening particles and bring better mechanical properties. Thus, by adjusting the weight ratio and content of PPO and PS, the PA6/SEBS‐g‐MA/(PPO/PS) blends with excellent impact strength, high tensile strength, and good heat deflection temperature were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45281.  相似文献   

8.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The poly(ethylene 1‐octene)‐g‐maleic anhydride copolymers (POE‐g‐MAH) with high grafting degree (GD) (>9%) have previously been obtained by a solvothermal method in our laboratory. It is found that the low GD (less than 2.5%) did not change the bulk properties of polyolefine elastomers (POE). Thereforefore, it is worth further understanding whether a high GD POE‐g‐MAH copolymer differs from the pure POE in its comprehensive properties and performance. In this article, POE‐g‐MAH with different GDs were synthesized and characterized by thermogravimetric analyze (TGA), differential scanning calorimetry (DSC), wide angle X‐ray diffraction spectroscopy (WAXD), and dynamic rheological testing. The results show that the thermal decomposition temperature, melting points, the crystallization temperatures, and the crystallinities were decreased by the increasing GD. By WAXD, three peaks respectively, attributed to the amorphous phase, the (110) and (200) interferences of the orthorhombic unit cell were detected, and they also decreased by the increasing GD. And the POE‐g‐MAH copolymers had higher storage modulus (G′), loss modulus (G″), and complex viscosity (η*) than those of pure POE. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The effects of glycerol and polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the morphology, thermal properties, and tensile properties of low‐density polyethylene (LDPE) and rice starch blends were studied by scanning electron microscopy (SEM), differential scanning calorimetry, and the Instron Universal Testing Machine, respectively. Blends of LDPE/rice starch, LDPE/rice starch/glycerol, and LDPE/rice starch/glycerol/PE‐g‐MA with different starch contents were prepared by using a laboratory scale twin‐screw extruder. The distribution of rice starch in LDPE matrix became homogenous after the addition of glycerol. The interfacial adhesion between rice starch and LDPE was improved by the addition of PE‐g‐MA as demonstrated by SEM. The crystallization temperatures of LDPE/rice starch/glycerol blends and LDPE/rice starch/glycerol/PE‐g‐MA blends were similar to that of pure LDPE but higher than that of LDPE/rice starch blends. Both the tensile strength and the elongation at break followed the order of rice starch/LDPE/glycerol/PE‐g‐MA blends > rice starch/LDPE/glycerol > LDPE/rice starch blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 344–350, 2004  相似文献   

11.
The melting behavior, nonisothermal crystallization behavior, and morphology of pure polypropylene (PP) and its blends were investigated by differential scanning calorimetry and polarized optical microscopy. The nonisothermal crystallization kinetics was analyzed using the Avrami equation modified by Jeziorny and the equation combining the Avrami and Ozawa method. The surface fold free energy and the effective activation energy for both PP and its blends were obtained by Hoffman‐Lauritzen theory and Vyazovkin's approach, respectively. The results showed that the presence of nylon 11 hindered the mobility of PP chains but accelerated the overall crystallization rate. The POM observation confirmed that the addition of nylon 11 decreased the spherulites size of PP matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

13.
2 vol.‐% TiO2 particles were incorporated into PET/PP blends with and without MA‐grafted PP compatibilizer. During extrusion of the PET/PP/TiO2 composites the TiO2 particles migrated from the PP matrix to the PET‐dispersed phase irrespective of the blending route. For the PET/PP/PP‐g‐MA/TiO2 composites, however, the location of TiO2 depended on the blending sequence. The preferred location of the TiO2 nanoparticles was confirmed by SEM pictures taken from the chemically etched surface of the blends. The observed migration behavior was traced to differences in the interfacial tensions between TiO2 and PET and TiO2 and PP, and to TiO2 encapsulation in one of the blend components during the related blending procedure.

  相似文献   


14.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

15.
A new copolymer of tris(2‐methoxyethoxy) vinylsilane (TMEVS)‐grafted ethylene–propylene–diene elastomer (EPDM‐g‐TMEVS) has been developed by grafting of TMEVS onto EPDM by using dicumylperoxide (DCP) initiator. The linear polystyrene blends (EPDM‐g‐TMEVS/PS) based on EPDM‐g‐TMEVS have been synthesized with varying weight percentages of polystyrene in a twin‐screw extruder. In a similar manner, the dynamically vulcanized and nanoclay‐reinforced polystyrene blends have also been developed using DCP and organically modified montmorillonite clay separately by means of a twin‐screw extruder. The grafting of TMEVS onto EPDM at allylic position present in the third monomer of EPDM has been confirmed by Fourier Transform infrared spectroscopy. The effect of silane‐grafted EPDM and concentration of nanoclay on mechanical properties of polystyrene blends has been studied as per ASTM standards. The morphological behavior of these blends has been investigated using scanning electron microscope. It was observed that the incorporation of silane‐grafted EPDM enhanced the impact strength and the percentage elongation of linear‐ and dynamically vulcanized blends. However, the values of tensile strength, flexural strength, flexural modulus, and hardness of the blends were found to be decreasing with the increase of silane‐grafted EPDM. In the case of nanoclay‐reinforced polystyrene blends, the values of impact strength, tensile strength, flexural strength, flexural modulus, and hardness were increased with an increase in the concentration of nanoclay. XRD studies have been carried out to confirm the formation of nanoclay‐reinforced EPDM‐g‐TMEVS/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Moderate cross‐linked blend (LLDPE‐PP) of linear low‐density polyethylene (LLDPE) and polypropylene (PP) with benzoyl peroxide (BPO) were prepared by the reactive melt mixing in HAAKE mixer. Effect of LLDPE‐PP as compatibilizer on the morphology, crystallization behavior and mechanical properties of LLDPE/PP (87/13) blends were studied using scanning electron microscopy (SEM), polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and mechanical testing machines. The results showed that LLDPE‐PP not only improved the interfacial adhesion between the LLDPE and PP but also acted as selective nucleating agent for crystal modification of PP. In the blends, the sizes of LLDPE and PP spherulites became smaller, and their melting enthalpies reduced in the presence of LLDPE‐PP. Furthermore, the mechanical properties of LLDPE/PP blends were improved with the addition of LLDPE‐PP, and when the concentration of LLDPE‐PP was 2 phr, the ternary blend had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The mechanical and morphological properties of polypropylene/nylon 6 blends compatibilized with PP grafted with maleic anhydride (PP‐g‐MA) and styrene/ethene‐co‐butene/styrene grafted with maleic anhydride (SEBS‐g‐MA) are studied using a special version of a factorial design known as extreme vertices. Properties examined include yield stress, modulus, elongation, toughness, impact strength and morphology. Comparisons are made between various treatment combinations (i.e. a variety of blends) and polypropylene homopolymer using various statistical methods including analysis of variance (ANOVA). Scheffe's Test and Duncan's Multiple Range Test. Significant differences were found for yield stress, modulus, elongation, toughness and impact strength for specific treatment combinations versus PP as well as on average. Ternary diagrams are used to plot response surfaces of the measured data illustrating the main effects and interactions involved, while allowing correlations to be made with blend morphology. Indications from test results and analysis of response surfaces show a strong relationship between nylon/compatibilizer ratio and mechanical properties.  相似文献   

18.
A study is presented on the morphological effects caused by the nanoclay organic modifier and the nanoclay concentration. This was made under previously determined compatibility conditions of heterophasic polypropylene copolymers (PP‐EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites. The nanocomposites were prepared using the fluidity of the EVA phase to disperse the nanoclay platelets. Therefore, no additional compatibilizer was used to achieve the clay dispersion. Two organoclays were used with different characteristics and polarity of the substituent groups. Transmission electron microscopy and X‐ray diffraction results first indicated that two hydrogenated tallow modifiers are more effective than one to enhance nanoclay exfoliation. Thermogravimetric studies indicated a low probability of thermal degradation of the nanoclay modifiers and as a consequence of their effect on the layer–layer exfoliation. Molecular simulations were made with the purpose to study additional factors affecting exfoliation. The introduction of nanoclay, within the compatibility conditions of the PP‐EP/EVA system, was also studied. It was determined that the system preserved its original morphology and that the silicate layers were hosted by the EVA domains. The crystallization characteristics of the PP‐EP/EVA mixtures indicated a gradual evolution of the overall crystalline structures depending on the EVA content. In the case of the ternary nanocomposites PP‐EP/EVA/nanoclay, the β crystalline structure was partially formed, although it decreased with increasing nanoclay content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The nonisothermal crystallization kinetics of polypropylene (PP), PP/polystyrene (PS), and PP/PP‐g‐PS/PS blends were investigated with differential scanning calorimetry at different cooling rates. The Jeziorny modified Avrami equation, Ozawa method, and Mo method were used to describe the crystallization kinetics for all of the samples. The kinetics parameters, including the half‐time of crystallization, the peak crystallization temperature, the Avrami exponent, the kinetic crystallization rate constant, the crystallization activation energy, and the F(T) and a parameters were determined. All of the results clearly indicate that the PP‐g‐PS copolymer accelerated the crystallization rate of the PP component in the PP/PP‐g‐PS/PS blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The crystallization of isotactic polypropylene (iPP) in its blends with ethylene–propylene–diene terpolymer (EPDM), reinforced with different fibers, is described in this work. In particular, the effects of both the fibers and the EPDM on the crystallization kinetics and morphology of iPP are analyzed. The study was performed using differential scanning calorimetry (DSC) in dynamic and isothermal conditions and optical microscopy. It was found that all the fibers act as effective nucleant agents on iPP crystallization independently of the blend composition. The results obtained highlight the accelerating effect of the fibers and of the EPDM on the PP crystallization up to a certain EPDM percentage. The halftime of crystallization, τ1/2, and the overall crystallization rate, Kn, increase in the presence of all the fibers analyzed, showed the aramidic ones the most effective. The isothermal crystallization kinetics of ternary composites based on PP–EPDM blend matrices reinforced with different types of fibers can be modeled using the Avrami equation. On the other hand, the kinetic curves obtained under nonisothermal conditions provide a further confirmation of the nucleating action of the fibers on the PP crystallization. Optical polarizing microscopy was also used to investigate the effect of EPDM on the spherulite growth and the transcrystallinity phenomenon on the surface of the fibers. The results of such analysis showed that the transcrystallinity phenomenon is hindered at high rubber percentages. As in the case of the rate of crystallization, the highest proportion of transcrystallinity was observed in the presence of the aramidic fibers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1063–1074, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号