首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(6):1245-1254
Abstract

In this study, Poly(N,N dimethyl‐amino ethylmethacrylate) (Poly(DMAEMA)) hydrogels with varying compositions were prepared in the form of rods by irradiating ternary mixtures of N,N‐dimethylamino ethylmethacrylate/ethyleneglycoldimethacrylate/water with gamma rays at ambient temperature. Swelling studies of poly (DMAEMA) hydrogels were performed at different pH values and maximum swelling values reached at pH 2. The adsorption characteristics of Pb(II), Cd(II), Ni(II), Zn(II), Cu(II), and Co(II) ions to poly(N,N dimethylamino ethylmethacrylate) hydrogels were investigated by a batch process. The order of affinity based on amount of metal ion uptake was found as follows: Cu(II)>Zn(II)?Co(II)>Pb(II) >> Ni(II)>Cd(II). In the adsorption studies of Cu(II), Zn(II), Co(II), Pb(II), Ni(II), and Cd(II) ions the Langmuir type adsorption isotherms were observed for all gel systems.  相似文献   

2.
《分离科学与技术》2012,47(3):579-590
Abstract

Adsorption gel was prepared from waste recycled paper by immobilizing iminodiacetic acid (IDA) functional group by chemical modification. The gel exhibited good adsorption behavior for a number of metal ions viz. Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. The order of selectivity was found to be as follows: Cu(II)>Pb(II)>Fe(III)>Ni(II)~Cd(II)~Co(II). From the adsorption isotherms, the maximum adsorption capacity of the gel for both Cu(II) and Pb(II) was found to be 0.47 mol/kg whereas that for Cd(II) was 0.24 mol/kg. A continuous flow experiment for Cd(II) showed that the gel can be useful for pre‐concentration and complete removal of Cd(II) from aqueous solution.  相似文献   

3.
In this article, the adsorption properties of poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibers for Cu(II), Cd(II), Co(II), Mn(II), Pb(II), Zn(II), Ni(II), and Cr(III) are investigated by a batch technique. Based on the research results of binding capacity, adsorption isotherm, effect of pH value on sorption, and adsorption kinetics experiments, it is shown that the poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibers have higher binding capacities and good adsorption kinetic properties for heavy metal ions. The sorption of the metal ions on the chelating fibers is strongly dependent on the equilibrium pH value of the solution. The adsorption isotherms of Cu(II) and Cd(II) on the chelating fiber exhibit a Langmuir-type equation. The adsorbed Cu(II), Cd(II), Zn(II), and Pb(II) could be eluted by diluted nitric acid. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 7–14, 1998  相似文献   

4.
1,4,8,11‐Tetraazacyclotetradecane (cyclam) was reacted with acryloyl chloride in a 1 : 2 molar ratio in dichloromethane in the presence of pyridine at 0°C. The modified cyclam was polymerized by adding an azobisisobutyronitrile initiator and irradiated with a UV lamp under reflux for 6 h. Precipitated cyclam containing polymer in the bulk structure was removed from the suspension by filtration. After washing and drying the final polymeric materials were used for transition metal ion adsorption and desorption studies. A Fourier transform IR spectrophotometer and thermogravimetric analyzer were used to characterize the polymeric structure. The affinity of the polymeric material for transition metal ions was used to test the adsorption–desorption of selected ions [Cu(II), Ni(II), Co(II), Cd(II), Pb(II)] from aqueous media containing different amounts of these metal ions (5–800 ppm) at different pH values (2.0–8.0). It was found that the adsorption rates were high and the adsorption equilibrium was reached in about 30 min. The uptake of the transition metal ions onto the polymer from solutions containing a single metal ion was 3.17 mmol/g for Cu(II), 0.98 mmol/g for Cd(II), 0.79 mmol/g for Co(II), 0.78 mmol/g for Ni(II), and 0.32 mmol/g for Pb(II). This polymer showed high affinity for Cu(II) compared to the other metal ions in the single ion solution and in the mixture of transition metal ions. The affinity order of the transition metal ions was Cu(II) ? Ni(II) > Cd(II) > Co(II) > Pb(II) for competitive adsorption. More than 95% of the adsorbed transition metal ions were desorbed in 2 h in a desorption medium containing 1.0M HNO3. Poly(cyclam) was found to be suitable for repeated use of more than five cycles without a noticeable loss of adsorption capacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1406–1414, 2002  相似文献   

5.
Crosslinked poly(acrylic acid), PAA, and poly(2‐acrylamidoglycolic acid), PAAG, were synthesized by radical polymerization. Both resins contain carboxylic acid groups. PAA at basic pH exists basically as an acrylate anion and PAAG shows three atoms or groups, carboxylic acid, hydroxyl, and amide groups, that can act as ion exchanger or chelating groups. Both resins are studied as adsorbents to trace metal ions from saline aqueous solutions and natural sea water and their properties by Batch equilibrium procedure are compared. The metal ions studied under competitive and noncompetitive conditions were Cu(II), Pb(II), Cd(II), and Ni(II). The effects of pH, time of contact, amount of resin, temperature, and salinity were studied. Resin PAA shows a high affinity (>80%) for Cu(II) and Cd(II) and resin PAAG shows also a high affinity for Ni(II), Pb(II), and Cd(II). By treatment of the metal ion‐loaded resin with 4M HNO3 it is possible to recover completely the Cu(II) ions from resin PAA and Ni(II) and Pb(II) from resin PAAG. The metal ion retention properties were studied with natural sea water. For those natural sea waters containing Cu(II) and Cd(II), the resins showed a high affinity for Cd(II) ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 697–705, 2006  相似文献   

6.
Two samples of macroporous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), poly(GMA-co-EGDMA), with different porosity parameters were synthesized by suspension copolymerization and modified by ring-opening reaction of the pendant epoxy groups with ethylene diamine (EDA). The samples were characterized by mercury porosimetry, FT-IR spectroscopy and elemental analysis. The sorption rate of the modified copolymer, poly(GMA-co-EGDMA)-en for Cu(II) ions determined under non-competitive conditions was relatively rapid, i.e. the maximum capacity was reached within 30 min. Batch sorption capacities for Cu(II), Fe(II), Mn(II), Cd(II), Zn(II), Pb(II), Cr(III) and Pt(IV) ions were determined under non-competitive conditions in the pH range 1.25–5.5 at room temperature. The maximum sorption capacities of poly(GMA-co-EGDMA)-en under non-competitive conditions were 1.30 mmol/g for Pt(IV) at pH 5.5, 1.10 mmol/g for Cu(II) at pH 5.5, 1.06 mmol/g for Pb(II) at pH 1.25 and 0.67 mmol/g for Cd(II) ions at pH 5.5. The selectivity of poly(GMA-co-EGDMA)-en towards Cu(II), Co(II), Ni(II), Pb(II) and Pt(IV) ions was investigated under competitive conditions. Poly(GMA-co-EGDMA)-en showed high selectivity for Pt(IV) over Cu(II), Co(II), Ni(II) and Pb(II) ions at pH 2.1. At pH 5.5, the metal sorption capacities of poly(GMA-co-EGDMA)-en decreased in the order: Cu(II) > Co(II) > Pt(IV)  Ni(II) > Pb(II). Regeneration of the Cu(II), Ni(II) and Pb(II) loaded poly(GMA-co-EGDMA)-en with 2 M H2SO4 showed that the polymer can be reused in several sorption/desorption cycles.  相似文献   

7.
A 2,2′-dihydroxybiphenyl–formaldehyde copolymer, synthesized by the condensation of 2,2′-dihydroxybiphenyl with CH2O in the presence of an acid catalyst, proved to be a selective chelating ion-exchange copolymer for certain metals. The chelating ion-exchange properties of this copolymer were studied for Fe(III), Cu(II), Ni(II), Zn(II), Cd(II), and Pb(II) ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake, involving the measurements of the distribution of a given metal ion between the copolymer sample and the solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe(III), Cu(II), and Ni(II) ions than for Co(II), Zn(II), Cd(II), and Pb(II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Nafion 117 membrane was investigated for the removal of Ni(II), Co(II), Pb(II), Cu(II) and Ag(I) metal ions from their synthesized aqueous solutions. The different variables affecting the adsorption capacity of the membrane such as contact time, initial metal ion concentration in the feed solution, pH of the sorption medium and temperature of the solution were investigated on a batch sorption basis. The affinity of Nafion 117 membrane towards heavy metal ions was found to increase in the sequence of Cu(II), Ni(II), Co(II), Pb(II), and Ag(I) with adsorption equilibrium achieved after 30 min for all metal ions. Among all parameters, pH has the most significant effect on the adsorption capacity, particularly in the range of 3.1-5.9. The variation of temperature in the range of 25-65 °C was found to have no significant effect on the adsorption capacity. Nafion 117 membrane was found to have high stability combined with repeated regeneration ability and can be suggested for effective removal of heavy metal ions such as Cu(II), Ni(II) and Co(II) from aqueous solutions.  相似文献   

9.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

10.
A series of poly(acrylamide‐co‐4‐vinylpyridine) hydrogels having varied acrylamide/4‐vinylpyridine content and different crosslink ratios of N,N′‐methylene‐bisacrylamide was prepared by using solution polymerization. The prepared hydrogel polymers were characterized by their elemental analysis, infrared spectroscopy, and equilibrium water content. The polymers were investigated toward metal ion uptake of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymers were more sensitive to Cu(II) and Ni(II) and the order of metal ion binding was Ni(II), Cu(II) > Zn(II) > Co(II) > Mn(II). Metal ion uptake by the polymers was reduced as the pH of the medium decreased. Recycling of the resins resulted in high recovery of the metal ions from their aqueous solutions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2522–2526, 2003  相似文献   

11.
The crosslinked resins poly(acrylic acid) (PAA) and poly[N‐3‐(dimethylamino)propyl acrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] are obtained by radical polymerization and characterized by FTIR spectroscopy. PAA at basic pH exists basically as an acrylate anion that may contain end carboxylate groups or form bridges acting as mono‐ or bidentate ligands. P(NDAPA‐co‐AA) presents three potential ligand groups in its structure: carboxylic acid, amide, and amine. The trace metal ion retention properties of these two resins is compared by using the batch equilibrium procedure. The metal ions are contained in saline aqueous solutions and are found in natural seawater. The retention of Cu(II), Pb(II), Cd(II), and Ni(II) metal ions is studied under competitive and noncompetitive conditions. The effects on the pH, contact time, amount of adsorbent, temperature, and salinity are investigated. The PAA resin presents a high affinity (>80%) for Cu(II) and Cd(II) ions. The P(NDAPA‐co‐AA) resin shows a high affinity for Pb(II) and Cd(II) ions. With 4M HNO3 it is possible to completely recover the PAA resin charged with Cu(II) ions and the P(NDAPA‐co‐AA) resin charged with Pb(II) ions. The two resins show a high affinity for Cd(II) ions from the seawater containing Cu(II) and Cd(II) ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1385–1394, 2005  相似文献   

12.
Terpolymers (2,4‐DHPBF) were synthesized by the condensation of 2,4‐dihydro‐xypropiophenone, biuret, and formaldehyde in the presence of acid catalyst with varying the molar ratio of reacting monomers. Terpolymer composition has been determined on the basis of their elemental analysis and their number–average molecular weight of these resin were determined by conductometric titration in nonaqueous medium. The viscosity measurements were carried out in N,N‐dimethyl formamide which indicate normal behavior. IR spectra were studied to elucidate the structure. The terpolymer resin has been further characterized by UV–visible and 1H‐NMR spectra. The newly synthesized terpolymers proved to be selective chelating ion‐exchange terpolymers for certain metals. The chelating ion‐exchange properties of this terpolymer was studied for Fe (III), Cu (II), Hg (II), Cd (II), Co (II), Zn (II), Ni (II), and Pb (II) ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The terpolymer showed a higher selectivity for Fe (III), Hg (II), Cd (II), and Pb (II) ions than for Cu (II), Co (II), Zn (II), and Ni (II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   

14.
Poly[(2‐hydroxyethyl)‐DL ‐aspartamide] was synthesized by polyreaction of aspartic acid and subsequent polymer‐analogous functionalization with ethanolamine. The water‐soluble polymer was characterized by FTIR, NMR, TGA and light‐scattering measurements. The metal complexing properties of the polymer were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II) and Pb(II) ions in aqueous solution using the liquid‐phase polymer‐based retention (LPR) method. According to the retention profiles of LPR, Cr(III), Fe(III), Cu(II) and Pb(II) showed a strong interaction with this polymer under these conditions, indicated by retention values of about 100 %. In contrast, Co(II), Ni(II), Zn(II), Sr(II) and Cd(II) exhibited retention values of only 50–60 % in dilute solution at pH 5. © 2000 Society of Chemical Industry  相似文献   

15.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

16.
A copolymer resin (p‐APDF) has been synthesized using the monomers p‐aminophenol, dithiooxamide, formaldehyde in 1 : 1 : 2M proportions in the presence of 2M HCl as catalyst. The structure of p‐APDF copolymer has been elucidated on the basis of elemental analysis and various physicochemical techniques, i.e., UV‐visible, FTIR, and 1H‐NMR spectroscopy. The number average molecular weight of copolymer resin was determined by nonaqueous conductometric titration in DMF. Viscosity measurement were carried out in DMF indicate normal behavior. The prepared resin proved to be a selective ion exchange resin for some metal ions. The chelating ion exchange properties of this resin was studied for Fe(III) and Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Pb(II) ions. A batch equilibrium method was used to study selectivity of metal ion uptake over a wide pH range and in media of various ionic strength. The resin showed a higher selectivity for Fe(III), Ni(II), Cu(II) ions than for Co(II), Pb(II), Zn(II), and Cd(II) ions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Two types of degradable poly(propylene glycol) (PPG) hydrogels that are suitable for the absorption of heavy metals have been presented. The PPG‐O‐P(O)Cl2 fragments obtained by treating hexafunctional PPG with phosphorous oxychloride (POCl3) react with 1,3‐propanediamine (PDA; Gel‐1 ) or PDA together with 1,2‐ethanedithiol ( Gel‐2 ), to yield cross‐linked and water‐swellable hydrogels in a one‐pot method. This protocol for the fabrication of PPG hydrogels exhibits promising advantages over prior methods including a short reaction time, mass‐production, easy separation, and high yield. A series of heavy metal ions were employed to test the adsorptive properties of the hydrogels. Gel‐2 shows better adsorption capacity than Gel‐1 for all the metal ions and the metal ions adsorption efficiency of the two types of hydrogels is in the order of Fe(III) > Pb(II) > Cd(II) > Zn(II) > Cu(II) > Ni(II) > Co(II) > Hg(II). The amounts of metal ions adsorbed increases with metal ion concentration and hydrogel dosage, but decreases with temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40610.  相似文献   

18.
Poly(methyl methacrylate) (PMMA) microspheres carrying poly(ethylene imine) (PEI) were prepared for the removal of heavy‐metal ions (copper, cadmium, and lead) from aqueous solutions with different amounts of these ions (50–600 mg/L) and different pH values (3.0–7.0). Ester groups in the PMMA structures were converted to imine groups in a reaction with PEI as a metal‐chelating ligand in the presence of NaH. The adsorption of heavy‐metal ions on the unmodified PMMA microspheres was very low [3.6 μmol/g for Cu(II), 4.6 μmol/g for Cd(II), and 4.2 μmol/g for Pb(II)]. PEI immobilization significantly increased the heavy‐metal adsorption [0.224 mmol/g for Cu(II), 0.276 mmol/g for Cd(II), and 0.126 mmol/g for Pb(II)]. The affinity order of adsorption (in moles) was Cd(II) > Cu(II) > Pb(II). The adsorption of heavy‐metal ions increased with increasing pH and reached a plateau value around pH 5.5. Their adsorption behavior was approximately described with the Langmuir equation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 197–205, 2001  相似文献   

19.
《分离科学与技术》2012,47(16):2399-2407
A new phenol–formaldehyde based chelating resin containing 4-(2-thiazolylazo) resorcinol (TAR) functional groups has been synthesized and characterized by Fourier transform infrared spectroscopy and elemental analysis. Its adsorption behavior for Cu(II), Pb(II), Ni(II), Co(II), Cd(II), and Mn(II) has been investigated by batch and column experiments. The chelating resin is highly selective for Cu(II) in the pH range 2 ~ 3, whereas alkali metal and alkaline earth metal ions such as Na(I), Mg(II), and Ca(II) are not adsorbed even at pH 6. Quantitative recovery of most metal ions studied in this work except Co(II) is achieved by elution with 2M HNO3 at a flow rate of 0.2 mL min?1. A similar trend is observed for distribution coefficient values. The quantitative separations achieved on a mini-column of chelating resin include Cd(II) – Cu(II), Mn(II) – Pb(II), Co(II) – Cu(II), Mn(II) – Ni(II), and Mn(II) – Co(II) – Cu(II). The recovery of copper(II) is quantitative (98.0–99.0%) from test solutions (10–50 mg/L) by 1 mol/L HNO3-0.01 mol/L EDTA. The chelating resin is stable in acidic solutions below 2.5 M HNO3 or HCl as well as in alkaline solution below pH 11. The adsorption behavior of the resin towards Cu(II) was found to follow Langmuir isotherm and second order rate.  相似文献   

20.
Various adsorbent materials have been reported in the literature for heavy metal removal. We have developed a novel approach to obtain high metal sorption capacity utilising cysteine containing adsorbent. Metal complexing aminoacid-ligand cysteine was immobilised onto poly(hydroxyethylmethacrylate) (PHEMA) microbeads. PHEMA-cysteine affinity microbeads containing 0.318 mmol cysteine/g were used in the removal of heavy metal ions (i.e. copper, lead and cadmium) from aqueous media containing different amounts of these ions (50–400 mg/l for Pb(II) and Cd(II), 25–60 mg/l for Cu(II)) and at different pH values (4.0–7.0). The maximum adsorption capacity of heavy metal ions onto the cysteine-containing microbeads under non-competitive conditions were 0.259 mmol/g for Pb(II), 0.330 mmol/g for Cd(II) and 0.229 mmol/g for Cu(II). The affinity order was observed as follows: Cd(II)>Pb(II)>Cu(II). The competitive adsorption capacities of the heavy metals were 0.260 mmol/g for Cd(II) and 0.120 mmol/g for Cu(II). Pb(II) adsorption onto cysteine-immobilised microbeads was zero under competitive conditions. The affinity order was as follows: Cd(II)>Cu(II)>Pb(II). The formation constants of cysteine–metal ion complexes have been investigated applying the method of Ruzic. The calculated value of stability constants were 1.75×104 l/mol for Pb(II)–cysteine complex and 4.35×104 l/mol for Cd(II)–cysteine complex and 1.39×104 l/mol for Cu(II)–cysteine complex. PHEMA microbeads carrying cysteine can be regenerated by washing with a solution of hydrochloric acid (0.05 M). The maximum desorption ratio was greater than 99%. These PHEMA microbeads are suitable for repeated use for more than three adsorption–desorption cycles without considerable loss in adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号