首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

2.
Polypropylene (PP) was melt blended with Vectra B‐950 [a thermotropic liquid crystalline polymer (LCP)], in a single screw extruder in presence of different doses of ethylene acrylic acid (EAA) copolymer, as modifier. The effect of incorporation in different proportions of EAA at a fixed dose of 5% LCP, on mechanical, thermal, morphological, and rheological properties of such blends was studied and the same were compared with that of pure PP and amongst themselves. Mechanical analysis (tensile properties) of the prepared blends exhibited improvements in ultimate tensile strength (UTS), modulus, toughness, hardness, and impact strength of PP matrix with the incorporation of EAA. The improvement in mechanical properties is associated with the formation of LCP fibrils as evidenced by scanning electron microscopy (SEM). A strong interaction through H‐bonding between the segments of Vectra B‐950 and EAA was established by FTIR study. Differential scanning calorimetry (DSC) studies indicated substantial increase in melting point of the blends, and thermogravimetric analysis (TGA) showed that the thermal stability of PP was improved with the addition of LCP and EAA. Rheological properties showed that LCP and EAA drop down the melt viscosity of PP and thus facilitate processibility of blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Polypropylene (PP) and Vectra A950, a thermotropic liquid crystalline polymer (LCP), blends were prepared in a single‐screw extruder with the variation in Vectra A950 content in presence of fixed amount (2%, with respect to PP and LCP mixture as a whole) of ethylene‐acrylic acid (EAA) copolymer as a compatibilizer. Mechanical analysis of the compatibilized blends within the range of LCP incorporations under study (2–10%) indicated pronounced improvement in the moduli, ultimate tensile strength (UTS), and hardness. Fourier transform infrared (FTIR) spectroscopy studies revealed the presence of strong interaction through H‐bonding between the segments of Vectra A950 and the compatibilizer EAA. Morphological studies performed by scanning electron microscopy (SEM) manifested the development of fine fibrillar morphology in the compatibilized PP/Vectra A950 blends, which had large influence on the mechanical properties. Differential scanning calorimetry studies showed an initial drop of the melting point of PP in the presence of EAA followed by enhancement of the same in presence of Vectra A950. TGA showed an increase in the thermal stability for all blends with respect to matrix polymer PP. Rheological studies showed that a very small quantity of Vectra A 950 was capable of reducing the melt viscosity of PP particularly in the lower shear rate region and hence facilitated processibility of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Maleic anhydride compatibilized blends of isotactic polypropylene (PP) and thermotropic liquid crystaline polymer (LCP) were prepared either by the direct injection molding (one-step process), or by twin-screw extrusion blending, after which specimens were injection molded (two-step process). The morphology and mechanical properties of these injection molded in situ LCP composites were studied by means of scanning electron microscopy (SEM), Izod impact testing, static tensile, and dynamic mechanical measurements. SEM observations showed that fine and elongated LCP fibrils are formed in the maleic anhydride compatibilized in situ composites fabricated by means of the one-step process. The tensile strength and modulus of these composites were considerably close to those predicted from the rule of mixtures. Furthermore, the impact behavior of LCP fibril reinforced composites was similar to that of the glass fiber reinforced polymer composites. On the other hand, the maleic anhydride compatibilized blends prepared from the two-step process showed lower mechanical performance, which was attributed to the poorer processing behavior leading to the degradation of PP. The effects of the processing steps, temperatures, and compatibilizer addition on the mechanical properties of the PP/LCP blends are discussed.  相似文献   

5.
Blends of an amorphous polyamide (PA) and a liquid crystalline copolyesteramide (LCP), poly(naphthoate-aminophenoterephthalate) were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. Morphological, thermal, mechanical, and rheological properties were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, capillary rheometry, and a tensile tester, respectively. The tensile mechanical behavior of the LCP/PA blends was found to be affected by their compositions and specimen thickness. Tensile testing revealed that the tensile mechanical behavior of the LCP/PA blends was very similar to that of polymeric composite and the tensile strength of the LCP/PA (50/50) blend was approximately two times of the value of PA homopolymer and exceeded that of pure LCP. The morphology of the LCP/PA blends was also found to be affected by their compositions. SEM studies revealed that the liquid crystalline polymer (LCP) formed finely dispersed spherical domains in the PA matrix and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. It has been found that droplet and fiber formations lead to low and high strength material, respectively. In particular, at specific LCP content (50 wt%), the tensile strength of the LCP/PA blend exceeded that of pure LCP. The improvement in tensile properties is likely due to the reinforcement of the PA matrix by the fibrous LCP phase as observed by SEM. A distinct shell-core morphology was found to develop in the injection molded samples of these blends. This is believed to have a synergistic effect on the tensile properties of the LCP/PA blends. The rheological behavior of the LCP/PA blends was found to be very different from that of the parent polymers and significant viscosity reductions were observed for the LCP/PA (50/50) blend. Based upon DSC, these blends have shown to be incompatible in the entire range of concentrations.  相似文献   

6.
Polypropylene-liquid crystalline polymer (PP/LCP) and maleic anhydride compatibilized PP/LCP blends were prepared using the extrusion technique followed by injection molding. The LCP employed was Vectra A950 which consists of 25 mol % of 2,6-hydroxynaphthoic acid and 75 mol % of p-hydroxybenzoic acid. The rheology, morphology, and impact behavior of compatibilized PP/LCP blends were investigated. The rheological measurements showed that the viscosity of LCP is significantly higher than that of the PP at 280°C. This implied that the viscosity ratio of the LCP to the polymer matrix is much larger than unity. Scanning electron microscopy (SEM) observations revealed that the LCP domains are dispersed mainly into elongated ellipsoids in the PP/LCP blends. However, fine fibrils with large aspect ratios were formed in the compatibilized PP/LCP blends containing LCP content ≥ 10 wt %. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had a large influence on the mechanical properties. The Izod impact strength of the PP/LCP blends showed little dependence on the LCP concentrations. On the other hand, the impact strength of the compatibilized PP/LCP blends was dependent on the LCP concentrations. The correlation between the LCP fibrillar morphology and spherulitic structure with the impact properties of the compatibilized PP/LCP blends is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 521–530, 1998  相似文献   

7.
Structural, rheological, and mechanical properties of ternary blends of a liquid crystalline copolyester (LCP) composed of p-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid, poly(ehtylene naphthalate)(PEN), and poly(ethylene terephtalate) (PET) were investigated using capillary rheometry, tensile testing, scanning electron microscopy, and X-ray diffraction. Viscosity-shear rate behavior of the ternary blends is very similar to that of pure polymers and their binary blends. The activation energy of flows of the ternary blends was smaller than those of PEN and PET. Tensile modulus and strength of extruded strands of the blends increased with increasing LCP content. The extruded strands of the blends consist of a crystalline and oriented LCP phase and an amorphous and unoriented PEN/PET blended phase. Tensile mechanical properties and structures of the ternary blends were discussed.  相似文献   

8.
A thermotropic liquid crystalline polymer (LCP) based on wholly aromatic copolyesters based on hydroxynaphthoic and hydroxybenzoic acid was melt-blended with a thermoplastic poly(phenylene oxide) by corotating twin screw extruder. Rheological properties, temperature transitions, dynamic and mechanical properties, and electron microscopy study have been performed. Rheological study indicated significant viscosity reductions with increasing LCP content leading to ease of processing. From the differential scanning calorimeter (DSC) and dynamic mechanical thermal analyzer results, these blends showed incompatibility for the whole range of concentrations. Mechanical properties were found to be slightly improved at low LCP and dramatically improved at above 50% LCP contents. In addition, impact strength was significantly increased up to two times after adding 10% LCP into the matrix. The morphology of blends was affected by composition. Droplets and stubby fibrils structures caused lower tensile strength, whereas fibrillar structure improved this property.  相似文献   

9.
Both uncompatibilized and compatibilized blends based on polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared in a Brabender Plastograph®. The compatibiliser used was maleic anhydride functionalized polypropylene (PP‐g‐MA). Phase morphology of the blends was inspected in scanning electron microscope (SEM) on cryogenically fractured etched surfaces of the specimens. PA12/PP blends possessed a nonuniform and unstable morphology owing to the incompatibility between their constituents. Addition of compatibiliser improved the interfacial characteristics of the blends by retarding the rate of coalescence. So, the phase morphology became more fine, uniform, and stable. Tensile properties of both uncompatibilized and compatibilized blends were measured as a function of blend composition and compatibiliser concentration. Uncompatibilized blends displayed inferior mechanical properties to compatibilized ones; especially for those containing 40–60 wt % of PP. Reactive compatibilisation of blends was found to be efficient and improved the tensile strength of the blends considerably. Addition of PP‐g‐MA improved the interfacial adhesion, decreased the interfacial tension, and thereby, enhanced the tensile strength by 85%. Finally, various models were adopted to describe the tensile strength of the blends. The experimental data exhibited a reasonably good fit with Nielsen's first power law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

10.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   

11.
Polypropylene/ethylene-propylene rubber/nanosilica (PP/EPR/nano-SiO2) composites were prepared by a melt blending masterbatch process using a Brabender mixer. In order to improve the interfacial adhesion and achieve diverse desired properties of the composites, nanosilica surface silylation by means of two silane coupling agents: N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane (AEAPTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS) was explored. The composites were also compatibilized using three compatibilizers: methyl methacrylate grafted PP (MMA-g-PP), glycidylmethacrylate grafted PP (GMA-g-PP) and maleic anhydride grafted PP (MAH-g-PP). The properties of the blends and the composites were examined using tensile and Izod impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (ATG) and scanning electron microscopy (SEM). According to the mechanical property evaluations, the incorporation of nano-SiO2 particles into PP/EPR blend improved the tensile strength and Young’s modulus of the composites. The elongation and Izod impact strength were adversely affected. A significant improvement in the mechanical properties was obtained for the composites with AEAPTMS-SiO2 and MAH-g-PP. The DSC results indicated that the incorporation of the modified silica and MAH-g-PP increased the crystallinity of the composites. However, no significant variation in the crystallinity was observed as a result of the addition of MMA-g-PP and GMA-g-PP. The TGA results revealed that the composites exhibit a higher thermal stability than that of the neat matrix. SEM micrographs of the fractured surfaces revealed a two-phase morphology with EPR nodules being dispersed in the PP matrix. SEM also indicated that the incorporation of MAH-g-PP into PP/EPR composites contributes to a better dispersion of the EPR phase and nano-SiO2 particles in the polymer matrix.  相似文献   

12.
The mechanical properties, melt rheology, and morphology of binary blends comprised of two polypropylene (PP) grades and two liquid crystalline polymers (LCP) have been studied. Compatibilization with polypropylene grafted with maleic anhydride (PP-g-MAH) has been attempted. A moderate increase in the tensile moduli and no enhancements in tensile strength have been revealed. Those findings have been attributed to the morphology of the blends, which is predominantly of the disperse mode. LCP fibers responsible for mechanical reinforcement were only exceptionally evidenced. Discussion of PP-LCP interfacial characteristics with respect to mechanical properties-morphology interrelations allowed evaluation of the compatibilizing efficiency of PP-g-MAH. Factors important for successful reinforcement of PP with LCP have been specified. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 969–980, 1997  相似文献   

13.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

14.
热致性液晶与聚丙烯原位复合材料的相容性研究   总被引:2,自引:0,他引:2  
在热致液晶共聚酯(LCP)与聚丙烯(PP)的共混体系中引入相容剂(接枝共聚物MAH—g-PP),借助热台偏光显微镜、扫描电镜、差示扫描量热仪、流变仪等方法研究了相容剂对PP/LCP原位复合材料的微观结构和界面性能、结晶行为、流变行为以及力学性能的影响.结果表明:添加相容剂后,基体中的LCP微纤分散更均匀,LCP微纤长径比L/D增大.PP和LCP两相之间有较好的粘连,促进了共混体的结晶,改善了PP/LCP原位复合材料的力学性能.  相似文献   

15.
Compatibilized blends of polyamide-6 (PA6) and thermotropic liquid crystalline polymer (LCP) modified with various high-impact polypropylene (HIPP) contents were injection-molded. These blends were compatibilized with maleic anhydride-grafted polypropylene (MAP). The effects of impact modification on the morphology, impact, static, and dynamic mechanical properties were investigated. The results showed that the HIPP addition leads to an improvement of the Izod impact strength of the blends significantly while it reduced the tensile strength and stiffness properties. An attempt was made to correlate the structure of the PA6(MAP)/HIPP/LCP blends from the scanning electron microscopic observations with the measured mechanical properties. This work provides a way to produce a tough in situ composite. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1611–1619, 1998  相似文献   

16.
Binary blends of a liquid crystalline polymer (LCP) and poly(ethylene 2,6-naphthalate) (PEN) were melt blended and injection molded. The mechanical properties were studied as a function of LCP content. Both the ultimate tensile strength and Young's modulus are higher than the theoretical values predicted by the rule of mixtures and they display a synergistic behavior at 70 wt % LCP content. However, the tensile strength decreases with LCP content and Young's modulus remained unchanged at lower LCP contents (10 to 30 wt %). The poor mechanical property is attributed to the immiscibility between PEN and LCP and the fibrillation behavior of LCP as revealed by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) results. However, LCP and PEN are found to be partially miscible at higher LCP content, ascertained by DSC and dynamic mechanical analysis (DMA). This is attributed to the transesterification reaction between PEN and PET moiety in the LCP molecules. SEM micrographs reveal a skin/core morphology in the tensile bars, that is, the LCP is better oriented in the skin than in the core region. At lower LCP content, the dispersed LCP phase is spherical in the core and ellipsoidal in the skin, with long axes oriented in the flow direction. DSC studies show that the crystallization rate is significantly enhanced by the presence of LCP up to 50 wt %, where the LCP acts as a nucleating agent for PEN crystallization. The melting temperature decreases with LCP content, probably as a result of imperfect crystals formed in the presence of LCP heterogeneous nucleating centers and the increasing miscibility between LCP and PEN. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 477–488, 2001  相似文献   

17.
Polymer blends of polyethersulfone (PES) with an all aromatic liquid crystalline co-polyester (LCP) were investigated. In addition, PES oligomers with the reactive functions end groups (?ONa) were added as a third component to the above blends in order to improve their properties. Flexural properties, such as modulus and strength, and dynamic viscoelastic properties, such as dynamic storage elasticity (E′) and loss tangent (tan δ), of the blends were measured. The morphology of blends was characterized using a differential scanning calorimeter (DSC) and a scanning electron microscope (SEM). Of the flexural properties, the modulus of PES increased almost linearly with increasing LCP content. However, strength decreased as LCP content increased to 20 wt%. In contrast, the addition of the PES oligomers had little effect on modulus, but strength was clearly improved. Regarding dynamic viscoelastic properties, the oligomer-containing blends exhibited complex behavior. Regarding morphologies, SEM analysis revealed that the LCP was not fibrous in the core of the blend containing 40 wt% or less, but the addition of the PES oligomers made LCP fibrous even in blends with low LCP content. It was concluded that the PES oligomers with reactive functional groups acted as a compatibilizer in polymer blends of PES/LCP.  相似文献   

18.
The miscibility and mechanical properties of the blends of polybutylene terephthalate (PBT) and polypropylene (PP) with a liquid crystalline ionomer (LCI) containing a sulfonate group on the terminal unit as a compatibilizer were assessed. SEM and optical microscopy (POM) were used to examine the morphology of blends of PBT/PP compatibilized by LCI. DSC and TGA were used to discuss the thermal properties of PBT/PP blends with LCI and without LCI. The experimental results revealed that the LCI component affect, to a great extent, the miscibility and crystallization process and mechanical property of PBT/PP blends. The fact is that increasing LCI did improve miscibility of PBT/PP blends and the addition of 1% LCI to the PBT/PP blends increased the ultimate tensile strength and the ultimate elongation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1110–1117, 2002  相似文献   

19.
聚丙烯/聚烯烃弹性体共混物的制备与性能研究   总被引:1,自引:1,他引:0  
通过熔融共混法制备了一系列聚丙烯(PP)/聚烯烃弹性体(POE)共混物,采用热重分析、示差扫描量热分析和拉伸测试对所得样品进行了热性能及力学性能的表征。结果表明,随着POE含量的增加,PP的抗拉强度和断裂伸长率均呈现先增加后减小的趋势。而当POE的含量低于5%时,样品的熔融温度明显低于纯PP的熔融温度;而当其含量超过5%时,样品的熔融温度与纯样基本一致。另外,POE的引入导致PP的热降解温度降低。  相似文献   

20.
将不同配比的聚丙烯(PP)和乙烯-乙酸乙烯共聚物(EVA)进行共混,测试了共混物的拉伸强度和冲击强度;用差示扫描量热法研究了共混物的结晶性能;用扫描电镜(SEM)二次电子成像系统分析了试样的断口形貌,研究了EVA含量对共混物力学性能的影响。结果表明:EVA的加入提高了EVA/PP共混体系的韧性,同时降低了PP的结晶度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号