首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Semiconducting single‐walled carbon nanotubes (swCNTs) are a promising class of materials for emerging applications. In particular, they are demonstrated to possess excellent biosensing capabilities, and are poised to address existing challenges in sensor reliability, sensitivity, and selectivity. This work focuses on swCNT field‐effect transistors (FETs) employing rubbery double‐layer capacitive dielectric poly(vinylidene fluoride‐co‐hexafluoropropylene). These devices exhibit small device‐to‐device variation as well as high current output at low voltages (<0.5 V), making them compatible with most physiological liquids. Using this platform, the swCNT devices are directly exposed to aqueous solutions containing different solutes to characterize their effects on FET current–voltage (FET IV) characteristics. Clear deviation from ideal characteristics is observed when swCNTs are directly contacted by water. Such changes are attributed to strong interactions between water molecules and sp2‐hybridized carbon structures. Selective response to Hg2+ is discussed along with reversible pH effect using two distinct device geometries. Additionally, the influence of aqueous ammonium/ammonia in direct contact with the swCNTs is investigated. Understanding the FET IV characteristics of low‐voltage swCNT FETs may provide insights for future development of stable, reliable, and selective biosensor systems.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Highly uniform and large‐area single‐walled carbon‐nanotube (SWNT) networks are realized by the dip‐coating method, which is based on fundamental fluid‐dynamic phenomena such as capillary condensation and surface tension. The changes in the polarity and hydration properties of the substrate affect the morphology of the SWNT networks and result in nonlinear growth of the networks in the repetitive dip‐coating process. The density and the thickness of the SWNT networks are controlled by processing variables including number of dip coatings, concentration of SWNT colloidal solution, and withdrawal velocity. The networks have uniform sheet resistances and high optical transmittance in the visible wavelength range.  相似文献   

15.
16.
The electron field‐emission (FE) characteristics of functionalized single‐walled carbon‐nanotube (CNT)–polymer composites produced by solution processing are reported. It is shown that excellent electron emission can be obtained by using as little as 0.7% volume fraction of nanotubes in the composite. Furthermore by tailoring the nanotube concentration and type of polymer, improvements in the charge transfer through the composite can be obtained. The synthesis of well‐dispersed randomly oriented nanotube–polymer composites by solution processing allows the development of CNT‐based large area cathodes produced using a scalable technology. The relative insensitivity of the cathode's FE characteristics to the electrical conductivity of the composite is also discussed.  相似文献   

17.
18.
Since their discovery in 1991, carbon nanotubes (CNTs) have been considered as the next‐generation reinforcement materials to potentially replace conventional carbon fibers for producing super‐high‐performance lightweight composites. Herein, it is reported that sheets of millimeter‐long multi‐walled CNTs with stretch alignment and epoxidation functionalization reinforce bismaleimide resin, which results in composites with an unprecedentedly high tensile strength of 3081 MPa and modulus of 350 GPa, well exceeding those of state‐of‐the‐art unidirectional carbon‐fiber‐reinforced composites. The results also provide important experimental evidence of the impact of functionalization and the effect of alignment reported previously on the mechanical performance and electrical conductivity of the nanocomposites.  相似文献   

19.
Functional organic field‐effect transistors (OFETs) have attracted increasing attention in the past few years due to their wide variety of potential applications. Research on functional OFETs underpins future advances in organic electronics. In this review, different types of functional OFETs including organic phototransistors, organic memory FETs, organic light emitting FETs, sensors based on OFETs and other functional OFETs are introduced. In order to provide a comprehensive overview of this field, the history, current status of research, main challenges and prospects for functional OFETs are all discussed  相似文献   

20.
An in situ electron microscopy study is presented of adhesion interactions between single‐walled carbon nanotubes (SWNTs) by mechanically peeling thin free‐standing SWNT bundles using in situ nanomanipulation techniques inside a high‐resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle in a controlled‐displacement manner and capture the deformation curvature of the delaminated SWNT bundle during the peeling process. A theoretical model based on nonlinear elastica theory is employed to interpret the measured deformation curvatures of the SWNTs and to quantitatively evaluate the peeling force and the adhesion strength between bundled SWNTs. The estimated adhesion energy per unit length for each pair of neighboring tubes in the peeling interface based on our peeling experiments agrees reasonably well with the theoretical value. This in situ peeling technique provides a potential new method for separating bundled SWNTs without compromising their material properties. The combined peeling experiments and modeling presented in this paper will be very useful to the study of the adhesion interactions between SWNTs and their nonlinear mechanical behaviors in the large‐displacement regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号