首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The miscibility and mechanical properties of the blends of polybutylene terephthalate (PBT) and polypropylene (PP) with a liquid crystalline ionomer (LCI) containing a sulfonate group on the terminal unit as a compatibilizer were assessed. SEM and optical microscopy (POM) were used to examine the morphology of blends of PBT/PP compatibilized by LCI. DSC and TGA were used to discuss the thermal properties of PBT/PP blends with LCI and without LCI. The experimental results revealed that the LCI component affect, to a great extent, the miscibility and crystallization process and mechanical property of PBT/PP blends. The fact is that increasing LCI did improve miscibility of PBT/PP blends and the addition of 1% LCI to the PBT/PP blends increased the ultimate tensile strength and the ultimate elongation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1110–1117, 2002  相似文献   

2.
合成了一种含有磺酸基的液晶离聚物(LCI),并研究了LCI作为相容剂对丙烯腈-丁二烯-苯乙烯三元共聚物/聚对苯二甲酸丁二醇酯(ABS/PBT)共混体系力学性能的影响。采用扫描电镜(SEM)、差示扫描量热仪(DSC)和热失重(TGA)分析对ABS/PBT/LCI共混物的热性能、微观形态和相容性进行了研究。研究结果表明LCI的加入,改善了二者的相容性,从而提高了共混物的拉伸强度、断裂伸长率以及缺口冲击强度。  相似文献   

3.
The liquid‐crystalline (LC) monomer 4‐allyoxybenzoyloxy‐4′‐buthylbenzoyloxy‐p‐phenyl (M1), whose LC phase appeared at lower temperatures, from 137 to 227°C, and the modified mesogenic monomer 4‐allyoxybenzoyloxy‐4′‐methyloxybenzoyloxy‐p‐biphenyl (M2), whose LC phase appeared at higher temperatures, from 185 to 312°C, were prepared. A series of side‐chain LC polysiloxanes containing M1 and M2 were prepared by graft copolymerization. Their LC properties were characterized by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. The results show that the introduction of the modified mesogenic monomer M2 into the polymeric structure caused an additional increase in the clearing point (isotropic transition temperature) of the corresponding polysiloxanes, compared with unmodified polysiloxanes, but did not significantly affect the glass‐transition temperature. Moreover, the modified polysiloxanes exhibited nematic phases as the unmodified polymer did. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1196–1201, 2005  相似文献   

4.
Thermotropic side‐chain liquid crystalline polymer (SLCP) and corresponding side‐chain liquid crystalline ionomer (SLCI) containing sulfonate acid were used in the blends of polypropylene (PP) and polybutylene terephthalate (PBT) by melt‐mixing respectively, and thermal behavior, morphological, and mechanical properties of two series of blends were investigated by differential scanning calorimetry, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy, and tensile measurement. Compared with the immiscible phase behavior of PP/PBT/SLCP blends, SLCI containing sulfonate acid groups act as a physical compatibilizer along the interface and compatibilize PP/PBT blends. FTIR analyses identify specific intermolecular interaction between sulfonate acid groups and PBT, and then result in stronger interfacial adhesion between these phases and much finer dispersion of minor PBT phase in PP matrix. The mechanical property of the blend containing 4.0 wt % SLCI was better than that of the other blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4712–4719, 2006  相似文献   

5.
A series of crosslinked liquid crystalline polymers and corresponding uncrosslinked liquid crystalline polymers were prepared by graft copolymerization. Their liquid crystalline properties were characterized by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The results showed that the crosslinking obtained in the isotropic state and the introduction of nonmesogenic crosslinking units into a polymeric structure could cause additional reduction of the clearing point (Ti) of the crosslinked polymers, compared with the corresponding uncrosslinked polymers. The crosslinked polymers (P‐2–P‐4) with a low crosslinking density exhibited cholesteric phases as did the uncrosslinked polymers. In contrast, a high crosslinking density made the crosslinked polymer P‐5 lose its thermotropic liquid crystalline property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 773–778, 2004  相似文献   

6.
A zinc salt of a lightly sulfonated (4.5 mol %) polystyrene ionomer was used to compatibilize a 3/1 (w/w) blend of syndiotactic polystyrene and a wholly aromatic thermotropic liquid‐crystalline polymer (TLCP). The addition of the ionomer significantly reduced the dispersed TLCP domain size and improved the tensile strength, ultimate elongation, and flexural toughness of the blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 564–568, 2003  相似文献   

7.
The compatibilization mechanism of some compatibilizers for blends of polyolefins with a liquid crystalline polymer (LCP) was studied. Polyethylene (PE) and polypropylene (PP) were blended with a semirigid LCP (SBH) in a batch mixer, either with and without compatibilizers. The latter were two commercially available samples of functionalized polyolefins, that is, a PE‐g‐MA (HDM) and a PP‐g‐AA (Polybond 1001) copolymer and some purposely synthesized PE‐g‐LCP and PP‐g‐LCP copolymers. Microtomed films of the binary and the ternary blends were annealed at 240°C on the hot stage of a polarizing microscope and the changes undergone by their morphology were recorded as a function of time. The results indicate that the compatibilizers lower the interfacial tension, thereby providing an improvement of the minor phase dispersion. In addition to this, the rate of the coalescence caused by the high‐temperature treatment is appreciably reduced in the systems compatibilized with the PE–SBH and PP–SBH graft copolymers. Among the commercial compatibilizers, only Polybond 1001 displayed an effect comparable to that of the above copolymers. HDM improved the morphology of the as‐prepared PE blends, but failed to grant sufficient morphological stabilization against annealing‐induced coarsening. The results are discussed with reference to the chemical structure of the different compatibilizers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3027–3034, 2000  相似文献   

8.
Liquid crystalline polymer (LCP) blends with a thermotropic LCP dispersed in the form of microspheres is studied to show the role of LCP spheres. Polycarbonate (PC), p‐hydroxybenzoic acid–poly(ethylene terephthalate) copolyester, and random styrene–maleic anhydride copolymer are used as the matrix, the dispersed phase, and the compatibilizer, respectively. A scanning electron microscopy observation shows the formation of LCP spheres with improved interfacial adhesion in the injection‐molded samples via compatibilization. The mechanical tests show increased modulus, elongation at break, and fracture‐absorbed energy of blends of LCP spheres‐dispersed PC. This shows an optimistic potential for the dispersed LCP phase, in spite of its morphology in the form of fibrils for reinforcing the matrix or in the form of microspheres for toughening the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1493–1499, 2003  相似文献   

9.
A novel side‐chain, liquid‐crystalline ionomer (SLCI) with a poly(methyl hydrosiloxane) main chain and side chains containing sulfonic acid groups was used in blends of polyamide‐1010 (PA1010) and polypropylene (PP) as a compatibilizer. The morphological structure, thermal behavior, and liquid‐crystalline properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The morphological structure of the interface of the blends containing SLCI was improved with respect to the blend without SLCI. The compatibilization effect of greater than 8 wt % SLCI for the two phases, PA1010 and PP, was better than the effects of other SLCI contents in the blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2749–2754, 2002; DOI 10.1002/app.10179  相似文献   

10.
The phase diagram of blends of liquid crystalline polymer (LCP) and polycarbonate (PC) was constructed. The effect of temperature on morphological development in melt‐blended samples was examined with a polarized light microscope, in conjunction with a heating stage. Phase separation in the blend was observed as the temperature was increased. For a particular LCP/PC blend composition, two‐phase separation temperatures (Tsp1 and Tsp2) were determined. Consequently, the corresponding phase diagram relating to phase separation was constructed. It was divided into three regions. No phase separation occurred when the blend was below Tsp1. However, a slight phase separation was detected when the temperature was between Tsp1 and Tsp2. Moreover, pronounced phase separation was observed when the blend was at a temperature above Tsp2. The phase‐separated structure varied according to the initial composition of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Covalent functionalization of multi‐walled carbon nanotubes (MWNTs) with side‐chain azobenzene liquid crystalline poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate} (PMMAZO) was successfully achieved via atom transfer radical polymerization. The resultant samples were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy. The results of differential scanning calorimetry and polarized optical microscopy show that the liquid crystalline behavior of PMMAZO‐functionalized carbon nanotubes (CNT‐PMMAZO) is similar to that of the PMMAZO homopolymer. The orientation of MWNTs and CNT‐PMMAZO in a PMMAZO matrix in the presence of an electric field was investigated. The results indicate that the orientation of MWNTs is dominated by the viscosity of the matrix, but the orientation of CNT‐PMMAZO is controlled by both the viscosity and the presence of a liquid crystalline phase ascribed to the compatibility between MWNTs and PMMAZO becoming better after covalent modification. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
Syntheses of novel liquid‐crystalline polymers containing azobenzene moieties were performed by a convenient route with an acrylate backbone. The azobenzenes were key intermediates of the monomers, and side‐chain liquid‐crystalline polymers were prepared, that is, poly[α‐{4‐[(4‐acetylphenyl)azo]phenoxy}alkyloxy]acrylates, for which the spacer length was 3 or 11 methylene units. In addition, poly[3‐{4‐[(3,5‐dimethylphenyl)azo]phenoxy}propyloxy]acrylate was prepared with a spacer length of 3 methylene units. The structures of the precursors, monomers, and polymers were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The polymers were obtained by conventional free‐radical polymerization with 2,2′‐azobisisobutyronitrile as an initiator. The phase‐transition temperatures of the polymers were studied with differential scanning calorimetry, and the phase structures were evaluated with a polarizing optical microscopy technique. The results showed that two of the monomers and their corresponding polymers exhibited nematic liquid‐crystalline behavior, and one of the monomers and its corresponding polymer showed smectic liquid‐crystalline behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2653–2661, 2002  相似文献   

13.
Rosario E.S. Bretas  Donald G. Baird   《Polymer》1992,33(24):5233-5244
This paper is concerned with a novel ternary blend composed of poly(ether imide) (PEI), poly(ether ether ketone) (PEEK) and a liquid crystalline polymer (LCP; HX4000, Du Pont). Different compositions were prepared by extrusion and injection moulding. Dynamic mechanical thermal analysis and the observation of the fracture surfaces, before and after annealing, allowed determination of the cold crystallization temperatures and miscibility behaviour of these systems. PEEK/PEI blends are known from previous studies to be miscible at all compositions. In this case it was observed that the PEEK/HX4000 blend was miscible up to 50 wt% HX4000 but partially miscible above this value. The PEI/HX4000 blends were found to be partially miscible in the whole concentration range. As a result, some ternary blend compositions exhibited only one phase, while others exhibited two phases. The measurement of the tensile properties showed that ternary blends with high modulus can be obtained at high LCP loadings, while compositions with high ultimate tensile strength can be obtained with high loadings of PEI or PEEK.  相似文献   

14.
Two liquid‐crystalline polyesters (LCPs) with different chain rigidities were synthesized and melt‐blended with polycarbonate (PC) at an LCP concentration of 2 wt %. The first LCP (LCP1) was based on hydroxybenzoic acid (HBA), hydroquinone (HQ), sebacic acid (SEA), and suberic acid (SUA) and contained a relatively high concentration of flexible units (SEA and SUA). The other one (LCP2) was based on HBA, hydroxynaphthoic acid, HQ, and SEA and contained a lower concentration of flexible units. LCP2 had a much lower melting point, a higher clearing temperature, and a lower shear viscosity than LCP1. The blending was carried out at 265, 280, and 300°C for both systems. The extent of the viscosity reduction induced by the addition of LCP1 depended on the compounding temperature, and the lowest viscosity was achieved with blending at 280°C. This was attributed to the large interfacial area and interactions between the flexible segments of LCP1 and PC chains at the interface. For PC/LCP2, the viscosity reduction was not significantly dependent on the compounding temperature, and when it was compounded at 280°C, its viscosity was significantly higher than that of PC/LCP1 at high shear rates, even though LCP2 had lower viscosity. A scanning electron microscopy study revealed that, with compounding at 265 and 280°C, LCP2 was poorly dispersed in the PC matrix in comparison with LCP1, and the glass‐transition‐temperature depression caused by the addition of LCP2 was relatively small. This indicated that interfacial interactions in PC/LCP2 were weaker, thereby explaining their different rheological behavior in comparison with PC/LCP1. With compounding at 300°C, the compatibility of both systems improved because of transesterification reactions, but this did not lead to a lower viscosity because of the lack of physical interfacial interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 960–969, 2004  相似文献   

15.
The rheological behaviors of noncompatibilized and compatibilized polypropylene/polyethylene terephthalate blends (80/20) in relation with their morphology were studied at two constant levels using maleic anhydride‐modified styrene‐ethylene‐butylene‐styrene polymer. By scanning electron microscopy of cryofractured surfaces, the morphology of the blends was examined after etching. The frequency sweep and step strain experiments were carried out for the blends. The frequency sweep results indicated that increasing the compatibilizer causes behavioral changes of the rheological properties, which could be related to the aggregation of the dispersed particles with rubbery shell. Also, the frequency sweep and step strain experiments in linear region, after cessation of simple steady shear flow with various preshear rates (higher shear stress values than Gp), were done on compatibilized blend. The results showed that the morphology characteristics, defined by the aggregation of the dispersed particles based on rheological experimental data, were destroyed and replaced by an alignment in the flow direction for present imposed shear rates. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Ternary in situ polycarbonate (PC)/polybutylene terephthalate (PBT)/liquid crystalline polymer (LCP) composites were prepared by injection molding. The liquid crystalline polymer used was a versatile Vectra A950. The matrix of composite was composed of PC/PBT 60/40 by weight. A solid epoxy resin (bisphenol type‐A) was used as a compatibilizer for the composites. Dynamic mechanical analysis (DMA) showed that epoxy resin was effective to improve the compatibility between PC and PBT, and between PC/PBT and LCP, respectively. Tensile tests revealed that the stiffness of composites shows little change with the LCP content up to 10 wt %. Above this concentration, the stiffness tended to increase with increasing LCP content. Furthermore, the tensile strengths appeared to increase with increasing LCP content, and their values were close to those predicted from the rule of mixtures. Scanning electron microscopic examination showed that LCP ribbons and short fibrils were developed in the composites containing LCP content ≤10 wt %. However, fine and elongated fibrils were formed in the skin and core sections of the composites when the LCP content reached 25 wt % and above. Thermogravimetric analysis indicated that the thermooxidative stability of the PC/PBT 60/40 blend tended to improve with increasing LCP content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1827–1835, 1999  相似文献   

17.
Thermally induced phase separation in liquid crystalline polymer (LCP)/polycarbonate (PC) blends was investigated in this study. The LCP used is a main‐chain type copolyester comprised of p‐hydroxybenoic acid and 6‐hydroxy‐2‐naphthoic acid. Specimens for microscopic observation were prepared by melt blending. The specimens were heated to a preselected temperature, at which they were held for isothermal phase separation. The preselected temperatures used in this study were 265, 290, and 300°C. The LCP contents used were 10, 20, and 50 wt %. These parameters corresponded to different positions on the phase diagram of the blends. The development of the phase‐separated morphology in the blends was monitored in real time and space. It was observed that an initial rapid phase separation was followed by the coarsening of the dispersed domains. The blends developed into various types of phase‐separated morphology, depending on the concentration and temperature at which phase separation occurred. The following coarsening mechanisms of the phase‐separated domains were observed in the late stages of the phase separation in these blends: (i) diffusion and coalescence of the LCP‐rich droplets; (ii) vanishing of the PC‐rich domains following the evaporation‐condensation mechanism; and (iii) breakage and shrinkage of the LCP‐rich domains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A series of siloxane‐based liquid crystalline elastomers containing the smectic crosslinking agent M‐1 and nematic monomer M‐2 were synthesized by a one‐step hydrosilication reaction. The chemical structures of the monomers and polymers obtained were confirmed by FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X‐ray diffraction (XRD) measurements. The influence of the crosslinking unit on the phase behavior was discussed. The experimental results demonstrated that the glass transition temperatures of elastomers had no remarkable change, and isotropization temperatures decrease with increasing the content of the crosslinking agent M‐1. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3755–3760, 2004  相似文献   

19.
A series of liquid‐crystalline (LC) polysiloxanes were synthesized by two different cholesteric monomers, cholest‐5‐en‐3‐ol(3β)‐10‐undecenoate and cholesteryloxycarbonylmethyl 4‐allyloxybenzoate. The chemical structures and LC properties of the monomers and polymers were characterized by various experimental techniques, including Fourier transform infrared spectroscopy, 1H‐NMR, elemental analysis, differential scanning calorimetry, and polarized optical microscopy. The specific rotation absolute values increased with increasing rigid spacers between the main chain and the mesogens. All of the polymers exhibited thermotropic LC properties and revealed cholesteric phases with very wide mesophase temperature ranges. With a reduction in the soft‐space groups in the series of polymers, the glass‐transition temperature and the isotropic temperature increased slightly on heating cycles. Reflection spectra of the cholesteric mesophase of the series of polymers showed that the reflected wavelength shifted to short wavelengths with decreasing soft‐space groups in the polymers systems, which suggested that the helical pitch became shorter with increasing rigid‐space groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The effect of liquid crystalline epoxy (LCE) resin on the curing behavior and thermomechanical properties of diglycidylether of bisphenol A (DGEBA) was investigated. LCE was blended with DGEBA and curing behavior of the blend was studied according to LCE content in the blend. Curing of DGEBA was accelerated and thermomechanical properties of DGEBA were considerably improved by the addition of LCE, which acted as a molecular reinforcement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号