首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α,ω‐Dihydroxy‐polydimethylsiloxane/polystyrene (PDMS/PS) blends were prepared by the solution polymerization of styrene (St) in the presence of α,ω ‐dihydroxy‐polydimethylsiloxane (PDMS), using toluene as solvent and benzoyl peroxide (BPO) as initiator. The PDMS/PS blends obtained by this method are a series of stable, white gums, which were vulcanized to elastomers at room temperature with methyl‐triethoxysilicane (MTES). The use level of MTES was far more than the necessary amount used to end‐link hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed to crosslinked networks, which were similar to SiO2 and acted as filler. Investigations were carried out on the elastomeric materials by extraction measurement, swelling measurement, and scanning electron microscopy. The extraction data show that at each composition the amount of soluble fraction is less than expected and the difference between experimental and theoretical values becomes more and more significant as PS content increases. This is mainly due to the grafting of PS onto PDMS and the entanglement of PS in the interpenetrating polymer network (IPN), which consists of either directly linked PDMS chains or chains linked via PS grafts and is formed by free radical crosslinking of PDMS during the radical polymerization of St. PS grafted on PDMS is insoluble and PS entangled in the IPN is difficult to extract. Both render the soluble fraction to be less than expected. As the St content in preparing PDMS/PS blends increases, the probability of grafting PS onto PDMS also increases, which may subsequently produce a higher crosslinking level of PDMS networks that linked via PS grafts by radical crosslinking. As a result, not only the amount of insoluble PS increases but also PS entangled in the IPN is more difficult to extract. Scanning electron microscopy demonstrates that the elastomer system has a microphase‐separated structure and a certain amount of PS remains in the PDMS networks after extraction, which is in accordance with the extraction data. Moreover, the mechanical properties of the elastormeric materials have been studied in detail. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3542–3548, 2004  相似文献   

2.
α,ω‐Dihydroxy‐polydimethylsiloxane (PDMS)/poly(methyl methacrylate) (PMMA) blends were prepared by the radical polymerization of methyl methacrylate in the presence of PDMS, with benzoyl peroxide as the initiator. The PDMS/PMMA blends obtained by this method were a series of stable, white gums, which were vulcanized into elastomers at room temperature with methyl triethoxysilicane (MTES). The MTES dosage was much larger than the amount necessary for end‐linking the hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed into crosslinked networks, which were similar to SiO2 and acted as fillers. Investigations were carried out on the elastomeric materials by extraction measurements, swelling measurements, and scanning electron microscopy. The extraction data showed that at each composition, the sol fraction was less than expected. The extracted materials were further studied with swelling measurements, which revealed that the material obtained from an elastomer with a higher PMMA content had an apparently larger equilibrium swelling degree. Scanning electron microscopy demonstrated that the elastomer system had a microphase‐separated structure consisting of PMMA domains within a continuous PDMS matrix. Moreover, the mechanical properties of the elastomeric materials were studied in detail. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1547–1553, 2006  相似文献   

3.
以过氧化苯甲酰(BPO)为引发剂,使苯乙烯(St)在α,ω-羟基聚二甲基硅氧烷(PDMS)的甲苯溶液中进行自由基聚合制备PDMS/聚苯乙烯(PS)共混物,在甲基三乙氧基硅烷与PDMS的质量比为1∶1时,制得PS增强的室温硫化硅橡胶。研究了原料配比、BPO用量和甲苯用量对硅橡胶力学性能的影响,并对其微观结构进行了表征。结果表明,当PDMS/St(质量比)为60/40、BPO为PDMS质量的2.5%、甲苯/PDMS(质量比)为2时,所得硅橡胶的拉伸强度可达到3.8 MPa,PS的增强效果明显;该室温硫化硅橡胶具有微相分离结构,PS作为分散相分布于PDMS连续相中,且具有2个玻璃化转变温度。  相似文献   

4.
The seeded batch dispersion polymerization with or without monomer absorption was compared with the batch polymerization and delayed addition by batch polymerization, to prepare the highly crosslinked, monodispersed polystyrene (PS) particles. The seeded batch polymerization was carried out under the variation of styrene (in second stage)/styrene (in PS seed) (St/St) ratio, divinylbenzene (DVB) concentration, and polymerization temperature using 1.9‐μm monodispersed PS seed particles. The experimental results imply that the seeded batch process is more efficient method that could avoid the sensitive particle nucleation step in the presence of the crosslinker than the batch and delayed addition processes. Without monomer absorption, 2.3‐μm uniform crosslinked PS particles with 7 wt % of the DVB were prepared in 1/1 (St/St) ratio. In comparison, with the monomer absorption, monodispersed and smooth‐surfaced PS particles containing 20 wt % of the DVB were formed. A total of 5% weight loss of the crosslinked PS particles determined by TGA occurred from 353.8 to 374.8°C, and the degree of swellability in toluene decreased from 150 to 104.5% with increasing the DVB concentration from 5 to 20 wt % because of the increase of the crosslink density of the particles. The seeded polymerization, especially through monomer absorption procedure, is a novel way to obtain highly crosslinked, monodispersed PS particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
A highly crosslinked, monodispersed polystyrene (PS) particle was prepared by the seeded semicontinuous dispersion polymerization using ready‐made monodispersed PS seed particles. The effects of Styrene (in 2nd stage)/Styrene (in PS seed) ratio, addition point and feeding time of divinylbenzene (DVB), concentration of DVB and polymerization temperature on the particle size, size distribution and morphology of the resulting particles were investigated. Monodispersed PS particles with 15 wt % of the DVB were prepared at 1/1 in St/St ratio, In comparison, highly crosslinked monodispersed and smooth‐surfaced PS particles containing up to 70 wt % of the DVB were effectively prepared at 0/1. 5% weight loss of the PS particles determined by TGA occurred from 353.3 to 389.6°C and the degree of swellability in toluene decreased from 113 to 101% as the DVB concentration increased from 10 to 70 wt %, implying increased thermal stability and solvent resistance due to the increase of the crosslink density. This study demonstrates that the seeded semicontinuous process, primarily with the starved condition at the second stage, is an efficient way to obtain highly crosslinked, monodispersed PS particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
PS/EPDM blends prepared by in situ‐polymerization of styrene in the presence of EPDM are immiscible and show two phases. Furthermore, the dynamic mechanical behavior of injected specimens is quite different from that of noninjected blends. This is attributed to the differences in morphology before and after injection molding. The morphology of the noninjected blends consists of PS spherical domains covered by a thin layer of EPDM, whereas the injected blends show elastomeric dispersed phase morphology in a rigid matrix. SEM analysis was important to elucidate the changes in the dynamic mechanical behavior of PS/EPDM blends, but TEM analysis is more precise for morphological characterization and yielded the real average diameter of EPDM particles. Comparing the average diameters for the PS/EPDM blends obtained from SEM and TEM analyses, the diameters obtained from the SEM analysis are wider than those of TEM which is due to the solvent extraction effect on the blend morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
PS/AES blends were prepared by in situ polymerization of styrene in the presence of AES elastomer, a grafting copolymer of poly(styrene‐co‐acrylonitrile) – SAN and poly(ethylene‐co‐propylene‐co‐diene)–EPDM chains. These blends are immiscible and present complex phase behavior. Selective extraction of the blends' components showed that some fraction of the material is crosslinked and a grafting of PS onto AES is possible. The morphology of the noninjected blends consists of spherical PS domains covered by a thin layer of AES. After injection molding, the blends show morphology of disperse elastomeric phase morphology in a rigid matrix. Two factors could contribute to the change of morphology: (1) the stationary polymerization conditions did not allow the mixture to reach the equilibrium morphology; (2) the grafting degree between PS and AES was not high enough to ensure the morphological stability against changes during processing in the melting state. The drastic change of EPDM morphology from continuous to disperse phase has as consequence a decrease in the intensity of the loss modulus peaks corresponding to the EPDM glass transition. However, the storage modulus at temperatures between the glass transition of EPDM and PS/SAN phases does not change significantly. This effect was attributed to the presence of the SAN rigid chains in the AES. © 2009 Wiley Periodicals, Inc. Journal of Applied Polymer Science, 2009  相似文献   

8.
Biodegradable, lactic acid based amorphous poly(ester‐urethane)s (PEU) were modified with poly(L‐lactic acid‐co‐ϵ‐caprolactone‐urethane) elastomer (P[LA/CL]U) by melt blending. The phase separation of P(LA/CL)U elastomer with three different ϵ‐caprolactone (CL) compositions (CL content 30, 50, and 70 mol %) and the mechanical properties of the resulting impact‐modified linear and branched PEU were investigated. The amounts of P(LA/CL)U elastomer in the PEU blends were 10, 15, 20, and 30 wt %. Dynamic mechanical thermal analysis (DMTA) of the blends with P(LA50/CL50)U and P(LA30/CL70)U elastomers revealed separate glass transition temperatures for rubber and matrix, indicating phase separation. No phase separation was found for P(LA70/CL30)U elastomer. The effect of mixing rate and temperature during processing on composite properties was tested by blending P(LA30/CL70)U rubber with PEU under various processing conditions. Impact modification studies were also made with two P(LA30/CL70)U elastomers having different amounts of functional groups. The influence of end‐functionalization and cross‐linking on mechanical properties was investigated in blends containing PEU and 15 wt % of these elastomers. Scanning electron microscopy (SEM) showed the morphology to change dramatically with increase in the degree of cross‐linking in the rubber. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1074–1084, 2000  相似文献   

9.
Blends of polystyrene (PS) and poly(dimethylsiloxane) (PDMS), with and without diblock copolymers (PS‐b‐PDMS), were prepared by melt mixing. The melt rheology behavior of the blends was studied with a capillary rheometer. The morphology of the blends was examined with scanning electron microscopy. The miscibility of the blends was studied with differential scanning calorimetry. The morphology of PS/PDMS blends was modified by the addition of PS‐b‐PDMS copolymers and investigated as a function of the molar mass of the diblock copolymers, viscosity ratios and the processing conditions. As investigated, the observed morphology of the melt‐blended PS/PDMS pair unambiguously supported the interfacial activity of the diblock copolymers. When a few percent of the diblock copolymers blended together with the PS and PDMS homopolymers, the phase size was reduced and the phase dispersion was firmly stabilized against coalescence. The compatibilizing efficiency of the copolymers was strongly dependent on its molar mass. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2747–2757, 2004  相似文献   

10.
In situ polymerization and in situ compatibilization was adopted for preparation of ternary PA6/PS‐g‐PA6/PS blends by means of successive polymerization of styrene, with TMI and ε‐caprolactam, via free radical copolymerization and anionic ring‐opening polymerization, respectively. Copolymer poly(St‐g‐TMI), the chain of which bears isocyanate (? NCO), acts as a macroactivator to initiate PA6 chain growth from the PS chain and graft copolymer of PS‐g‐PA6 and pure PA6 form, simultaneously. The effect of the macroactivator poly(St‐g‐TMI) on the phase morphology was investigated in detail, using scanning electron microscopy. In case of blends with higher content of PS‐g‐PA6 copolymer, copolymer nanoparticles coexisting with the PS formed the matrix, in which PA6 microspheres were dispersed evenly as minor phase. The content of the compositions (homopolystyrene, homopolyamide 6, and PS‐g‐PA6) of the blends were determined by selective solvent extraction technique. The mechanical properties of PA6/PS‐g‐PA6/PS blends were better than that of PA6/PS blends. Especially for the blends T10 with lower PS‐g‐PA6 copolymer content, both the flexural strength and flexural modulus showed significantly improving because of the improved interfacial adhesion between PS and PA6. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
Blends of polystyrene (PS) and the polyether polyurethane elastomer (PU‐et) were prepared by melt mixing using poly(styrene‐co‐maleic anhydride) (SMA) containing 7 wt % of maleic anhydride as a compatibilizer. The polyurethane in the blends was crosslinked using dicumyl peroxide or sulfur. The content of maleic anhydride was varied in the blends through the addition of different SMA amounts. The morphology of the blends was analyzed by SEM and a drastic reduction of both the domain size and its distribution was observed with increase of the anhydride content in the blends. The morphology of the PU‐et blends also showed dependence on the crosslinker agent used for the elastomer, and larger domains were obtained for the elastomer phase crosslinked with dicumyl peroxide. The mechanical properties of the blends were evaluated by flexural and impact strength tests. The blend containing 0.5 wt % of maleic anhydride and 20 wt % of PU‐et crosslinked with sulfur showed the highest strength impact, which was three times superior to the PS strength impact, and the blends containing 20 wt % of PU‐et crosslinked with dicumyl peroxide showed the highest deflection at break independent of the anhydride content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 830–837, 2002  相似文献   

12.
Reactive compatibilization was used to control and stabilize 20–30wt% poly(dimethylsioxane) (PDMS) dispersions in nylon 6 (PA) and poly(styrene) (PS), respectively. The effect of the type of reation (amine (NH2)/anhydride (An), NH2/ epoxy(E) and carboxylic acid (COOH)/E) on the morphology was studied with electron microscopy. PS and PDMS have mutual solvents thus it was possible to use gel permeation chromatography (GPC) to determine the concentration of block copolymer in PS/PDMS blends. Reactive blending of PA6 with difunctional PDMS‐(AN)2 did not decrease the PDMS particle size compared to the non‐reactive blend (~10μm). Particle size decreaeased significantly to about 0.5 μm when PA6 was blended with a PDMS containing about 4 random An groups along the chain. For the PS/PDMS blends, GPC revealed that the NH2/An reaction formed about 3% block copolymer and produced stable PDMS particles ~ 0.4 μm. No reaction was detected for the PS‐NH2/PDMS‐E blend and the morphology was coarse and unstable. Also, PS‐NH2/PDMS‐An reactivity was lower compared to other systems such as PS/ poly (isoprene) and PS/poly(methaacrylte) using the same reaction. This was attributed to the relatively thinner PS/PDMS interface dueto the high PS/PDMs immiscibility.  相似文献   

13.
The copolymers of 4‐vinylpyridine (4VP), styrene (St) and divinylbenzene (DVB) with varied compositions, P(4VP‐St‐DVB), were synthesized by suspension polymerization using 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. The insoluble (crosslinked) pyridinium‐type polymers in benzyl–pyridinium bromide form, which possess various macromolecular chain compositions, were prepared by the reaction of each P(4VP‐St‐DVB) with benzyl bromide (BzBr), respectively. By using different halohydrocarbon RX in the quaternization of P(4VP‐St‐DVB), the insoluble pyridinium‐type polymers with various pyridinium group structures were obtained. The structures of P(4VP‐St‐DVB) and its quaternized product Q‐P(4VP‐St‐DVB) were identified by FTIR. The 4VP content in each copolymer P(4VP‐St‐DVB) was measured by nonaqueous titration; and the pyridinium group content (Cq) in each Q‐P(4VP‐St‐DVB) sample was determined by means of the back titration manner in argentometry and/or the elemental analysis method, respectively. In addition, the particle structure and the surface morphology of the thus‐prepared polymer were observed using SEM. According to a series of experimental results, the preparation and characterization of insoluble pyridinium‐type polymers are analyzed and discussed. This work can prepare the ground for a study on the antibacterial activity of insoluble pyridinium‐type polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 668–675, 2000  相似文献   

14.
以CR和苯乙烯单体为原料,二乙烯基苯(DVB)为苯乙烯的交联剂,采用分步合成法制备CR/聚苯乙烯(PS)互穿网络共混物。结果表明,苯乙烯用量为50份、交联剂DVB用量为2.5份时,CR/PS互穿网络共混物综合物理性能较好,并出现应力屈服现象,表现出部分塑料性质,FTIR和SEM分析证明在此条件下制备的共混物形成了较完整的互穿网络结构。  相似文献   

15.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
Blends of polystyrene (PS) with polyester polyurethane elastomer (PU‐es) were compatibilized by addition of poly(styrene‐co‐maleic anhydride) (SMA) containing 7 wt % of maleic anhydride. Binary nonreactive (PS/PU‐es) blends, binary reactive (SMA/PU‐es) blends, and ternary reactive blends (PS/SMA/PU‐es) were prepared with 10 and 20 wt % of PU‐es. The maleic anhydride content in the ternary reactive blends was varied through addition of different SMA amounts from 0.5 to 5 wt %. Polyurethane in the blends was crosslinked by using dicumyl peroxide or sulfur to improve its mechanical properties. The experimental processing conditions, such as temperature and rotor speed in an internal mixer, were analyzed before blend preparation by processing the individual polymers, PS and SMA, and the PS/PU‐es nonreactive blend (90/10), to prevent the degradation of the polymer during melt mixing and to assure macroscopic homogeneity. The torque behavior during the mixture indicated a grafting copolymerization, which was responsible for the significant drop of the PU‐es domain size in the glassy matrix, as observed by scanning electronic microscopy (SEM). The miscibility of the glassy matrix, which was shown to be dependent on the composition and the phase behavior of ternary blends, became very complex as the SMA concentration increased, as concluded from dynamical–mechanical analysis. Blends containing 20 wt % of PU‐es presented an increase up to a factor of 2 in the deflection at break in relation to PS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2297–2304, 2004  相似文献   

17.
Polyurethane‐clay nanocomposite elastomers were synthesized using polyol‐clay blends with different levels of dispersion, which affected the final elastomer microstructure. A PU‐clay microcomposite elastomer containing partially dispersed clay showed poorer mechanical and similar fire properties to the unmodified polyurethane. More complete dispersion of the clay into the polyol led to an exfoliated structure in the final elastomer. This showed a higher modulus and kept a viscoelastic behavior to higher temperature than the pristine PU. The enhancement of mechanical and thermal properties in the nanocomposite elastomer can be attributed to the degree of clay exfoliation, and this also prevented dripping during the UL 94 fire test. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

19.
Crosslinked polydimethylsiloxane/polyetherimide (PDMS/PEI) composite membranes were prepared, in which asymmetric microporous PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat‐plate composite membrane. The different function composition of the PDMS/PEI composite membranes were characterized by reflection Fourier transform infrared (FTIR) spectroscopy. The surface and section of PDMS/PEI composite membranes were investigated by scanning electron microscope (SEM). The composite membranes prepared in this work were employed in pervaporation separation of benzene/cyclohexane mixtures. Effects of feed temperature, feed composition, concentration of crosslinking agent on the separation efficiency of benzene/cyclohexane mixtures were investigated experimentally. In addition, the swelling rate and stableness of composite membrane during long time operation were studied, which should be significant for practical application. The results demonstrated that the pervaporation method could be very effective for separation of the benzene/cyclohexane mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
茂金属聚乙烯弹性体mPE增韧改性聚丙烯的研究   总被引:12,自引:0,他引:12  
本研究工作用茂金属聚乙烯弹性体mPE代替代表的弹性体,对PP的增专改性进行了研究,探讨了共混工艺参数和橡逆比对共混物力学性能的影响;并对不同的弹性体的增韧效果做了对比研究,结果表明,与传统的弹性体相比,mPE增韧改性的PP显示出卓越的低温性能和加工性能;另外用扫描电子显微镜(SEM)对共混物相态结构及断裂形貌进行了分析研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号