首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially cholesterol‐substituted 8‐arm poly(ethylene glycol)‐block‐poly(L ‐lactide) (8‐arm PEG‐b‐PLLA‐cholesterol) has been prepared as a novel star‐shaped, biodegradable copolymer derivative. The amphiphilic 8‐arm PEG‐b‐PLLA‐cholesterol aqueous solution (polymer concentration, above 3 wt%) exhibits instantaneous temperature‐induced gelation at 34 °C, but the virgin 8‐arm PEG‐b‐PLLA does not, irrespective of concentration. Moreover, an extracellular matrix (ECM)‐like micrometer‐scale network structure has been created with favorable porosity for three‐dimensional proliferation of cells inside the hydrogel. This network structure is mainly attributed to specific self‐assembly between cholesterol groups. The 10 and 20 wt% hydrogels are eroded gradually in phosphate buffered saline at 37 °C over the course of a month, and after that the gel becomes completely dissociated. Moreover, L929 cells encapsulated into the hydrogel are viable and proliferate three‐dimensionally inside the hydrogels. Thus, in‐vitro cell culture studies demonstrate that 8‐arm PEG‐b‐PLLA‐cholesterol is a promising candidate as a novel injectable cellular scaffold.  相似文献   

2.
The emerging 3D printing technique allows for tailoring hydrogel‐based soft structure tissue scaffolds for individualized therapy of osteochondral defects. However, the weak mechanical strength and uncontrollable swelling intrinsic to conventional hydrogels restrain their use as bioinks. Here, a high‐strength thermoresponsive supramolecular copolymer hydrogel is synthesized by one‐step copolymerization of dual hydrogen bonding monomers, N‐acryloyl glycinamide, and N‐[tris(hydroxymethyl)methyl] acrylamide. The obtained copolymer hydrogels demonstrate excellent mechanical properties—robust tensile strength (up to 0.41 MPa), large stretchability (up to 860%), and high compressive strength (up to 8.4 MPa). The rapid thermoreversible gel ? sol transition behavior makes this copolymer hydrogel suitable for direct 3D printing. Successful preparation of 3D‐printed biohybrid gradient hydrogel scaffolds is demonstrated with controllable 3D architecture, owing to shear thinning property which allows continuous extrusion through a needle and also immediate gelation of fluid upon deposition on the cooled substrate. Furthermore, this biohybrid gradient hydrogel scaffold printed with transforming growth factor beta 1 and β‐tricalciumphosphate on distinct layers facilitates the attachment, spreading, and chondrogenic and osteogenic differentiation of human bone marrow stem cells (hBMSCs) in vitro. The in vivo experiments reveal that the 3D‐printed biohybrid gradient hydrogel scaffolds significantly accelerate simultaneous regeneration of cartilage and subchondral bone in a rat model.  相似文献   

3.
Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden Alg hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross-linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion-cross-linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured Alg hydrogels for applications as cell carriers and in disease modeling.  相似文献   

4.
To satisfy the ever-accelerated demands for advanced engineering biomaterials with excellent physicochemical properties, injectable and recoverable dual-network (DN) hydrogels based on poly(l -lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) and Aga are constructed by simply mixing PLL-g-HPA/HRP and PLL-g-HPA/H2O2 in Aga through enzyme-catalyzed cross-linkage of PLL-g-HPA and temperature-adjusted sol-gel transition of Aga. The recoverable and injectable performances of hydrogels are attributed to the reversible sol-gel transitional feature of Aga and enzymatically cross-linked reaction of PLL-g-HPA. DN hydrogels have fast and adjusted gelation time, connective pore structure, superior formability, and good biocompatibility. The helically structural Aga network endows the hydrogels with good mechanical strength and superior stability in extreme condition. Schiff-base effect between amino in skin tissues and carbonyl formed by the oxidation of phenol groups in hydrogel imparts the hydrogels to promising tissue attachment. Bursting pressure assay illustrates that the bursting pressure (34.5 ± 2.4 kPa) for 13.6% DN hydrogel is much higher than arterial blood pressure (16 kPa). The incorporated cationic PLL-g-HPA gives the hydrogels remarkable antibacterial ability, which effectively prevents the bacterial infection. In conclusion, the DN hydrogel with good cytocompatibility, inherently antibacterial ability, tissue adhesion, and excellent stability in extreme environment is probably able to become a promising candidate as potential wound dressings.  相似文献   

5.
Since the traditional 2D surface for cell growth has been shown to be increasingly insufficient in contemporary cell biology, more and more research is performed on 3D matrices that can better represent the natural extracellular matrix (ECM) in many aspects. To create such a complex nonuniform 3D matrix, four‐armed polyethylene glycol with azides and (1R,8S,9S)‐bicyclo[6.1.0]non‐4‐yn‐9‐yl groups is functionalized to form the hydrogel basis. Together with these, a matrix metalloproteinase cleavable peptide sequence as a functional motif is also built in to add degradability to the hydrogel. In addition, self‐assembled peptide amphiphile (PA) fibers containing a cellular binding peptide sequence (RGDS) are encapsulated in the hydrogel to mimic the natural fibrous structure of the ECM and to stimulate cell adhesion. Rheology studies confirm that the polymer dissolved in the PA fiber solution forms a stable hydrogel with acceptable mechanical properties (G′ = 3.8 kPa). In addition, it is shown that this hydrogel network is degradable under the action of a metalloproteinase enzyme. Finally, the hybrid hydrogel is used to culture and it is demonstrated that both HeLa cells and human mesenchymal stem cells show adherence, good viability, and a well‐spread shape inside the hybrid hydrogel after 5 days of incubation when all components are present.  相似文献   

6.
To face the increasing demand of self‐healing hydrogels with biocompatibility and high performances, a new class of cellulose‐based self‐healing hydrogels are constructed through dynamic covalent acylhydrazone linkages. The carboxyethyl cellulose‐graft‐dithiodipropionate dihydrazide and dibenzaldehyde‐terminated poly(ethylene glycol) are synthesized, and then the hydrogels are formed from their mixed solutions under 4‐amino‐DL‐phenylalanine (4a‐Phe) catalysis. The chemical structure, as well as microscopic morphologies, gelation times, mechanical and self‐healing performances of the hydrogels are investigated with 1H NMR, Fourier transform infrared spectroscopy, atomic force microscopy, rheological and compression measurements. Their gelation times can be controlled by varying the total polymer concentration or 4a‐Phe content. The resulted hydrogels exhibit excellent self‐healing ability with a high healing efficiency (≈96%) and good mechanical properties. Moreover, the hydrogels display pH/redox dual responsive sol‐gel transition behaviors, and are applied successfully to the controlled release of doxorubicin. Importantly, benefitting from the excellent biocompatibility and the reversibly cross‐linked networks, the hydrogels can function as suitable 3D culture scaffolds for L929 cells, leading to the encapsulated cells maintaining a high viability and proliferative capacity. Therefore, the cellulose‐based self‐healing hydrogels show potential applications in drug delivery and 3D cell culture for tissue engineering.  相似文献   

7.
Size‐regulated amphiphilic poly(amino acid) nanoparticles (NPs) composed of poly(γ‐glutamic acid) (γ‐PGA) and the hydrophobic amino acid derivative, L ‐phenylalanine ethyl ester (Phe) are prepared to evaluate the effects of particle size on dendritic cell (DC) uptake of NPs and their immune stimulatory activities as delivery carriers and adjuvants. The size of the Phe‐conjugated γ‐PGA NPs (γ‐PGA–Phe NPs) is easily controlled by regulating the aggregated γ‐PGA–Phe numbers. Each of the differently sized γ‐PGA–Phe NPs could efficiently encapsulate ovalbumin (OVA), and the amount of encapsulated OVA per milligram of NPs is almost the same despite the differences in size. The DC uptake of small NPs is lower than for the larger NPs, but the effect of DC activation by NPs is high in the small sizes. The DC activation is significantly affected by the size of the NPs, which suggests that not only the uptake process of the NPs, but also the surface interactions between the NPs and DCs, is important for the induction of DC maturation. The precisely size‐controllable γ‐PGA–Phe NPs have significant potential as an antigen carrier and vaccine adjuvant. These results should provide guidelines for adjuvant design in the development of an effective vaccine.  相似文献   

8.
Biocompatible hydrogel inks with shear‐thinning, appropriate yield strength, and fast self‐healing are desired for 3D bioprinting. However, the lack of ideal 3D bioprinting inks with outstanding printability and high structural fidelity, as well as cell‐compatibility, has hindered the progress of extrusion‐based 3D bioprinting for tissue engineering. In this study, novel self‐healable pre‐cross‐linked hydrogel microparticles (pcHμPs) of chitosan methacrylate (CHMA) and polyvinyl alcohol (PVA) hybrid hydrogels are developed and used as bioinks for extrusion‐based 3D printing of scaffolds with high fidelity and biocompatibility. The pcHμPs display excellent shear thinning when injected through a syringe and subsequently self‐heal into gels as shear forces are removed. Numerical simulations indicate that the pcHμPs experience a plug flow in the nozzle with minimal disturbance, which favors a steady and continuous printing. Moreover, the pcHμPs show a self‐supportive yield strength (540 Pa), which is critical for the fidelity of printed constructs. A series of biomimetic constructs with very high aspect ratio and delicate fine structures are directly printed by using the pcHμP ink. The 3D printed scaffolds support the growth of bone‐marrow‐derived mesenchymal stem cells and formation of cell spheroids, which are most important for tissue engineering.  相似文献   

9.
Porous structures have emerged as a breakthrough of shape‐morphing hydrogels to achieve a rapid response. However, these porous actuators generally suffer from a lack of complexity and diversity in obtained 3D shapes. Herein, a simple yet versatile strategy is developed to generate shape‐morphing hydrogels with both fast deformation and enhanced designability in 3D shapes by combining two promising technologies: electrospinning and 3D printing. Elaborate patterns are printed on mesostructured stimuli‐responsive electrospun membranes, modulating in‐plane and interlayer internal stresses induced by swelling/shrinkage mismatch, and thus guiding morphing behaviors of electrospun membranes to adapt to changes of the environment. With this strategy, a series of fast deformed hydrogel actuators are constructed with various distinctive responsive behaviors, including reversible/irreversible formations of 3D structures, folding of 3D tubes, and formations of 3D structures with multi low‐energy states. It is worth noting that although poly(N‐isopropyl acrylamide) is chosen as the model system in the present research, our strategy is applicable to other stimuli‐responsive hydrogels, which enriches designs of rapid deformed hydrogel actuators.  相似文献   

10.
Micropatterning technology is a powerful tool for controlling the cellular microenvironment and investigating the effects of physical parameters on cell behaviors, such as migration, proliferation, apoptosis, and differentiation. Although there have been significant developments in regulating the spatial and temporal distribution of physical properties in various materials, little is known about the role of the size of micropatterned regions of hydrogels with different crosslinking densities on the response of encapsulated cells. In this study, a novel alginate hydrogel system that can be micropatterned three‐dimensionally is engineered to create regions that are crosslinked by a single mechanism or dual mechanisms. By manipulating micropattern size while keeping the overall ratio of single‐ to dual‐crosslinked hydrogel volume constant, the physical properties of the micropatterned alginate hydrogels are spatially tunable. When human adipose‐derived stem cells (hASCs) are photoencapsulated within micropatterned hydrogels, their proliferation rate is a function of micropattern size. Additionally, micropattern size dictates the extent of osteogenic and chondrogenic differentiation of photoencapsulated hASC. The size of 3D micropatterned physical properties in this new hydrogel system introduces a new design parameter for regulating various cellular behaviors, and this dual‐crosslinked hydrogel system provides a new platform for studying proliferation and differentiation of stem cells in a spatially controlled manner for tissue engineering and regenerative medicine applications.  相似文献   

11.
Hydrogels are commonly used as engineered extracellular matrix (ECM) mimics in applications ranging from tissue engineering to in vitro disease models. Ideal mechanisms used to crosslink ECM‐mimicking hydrogels do not interfere with the biology of the system. However, most common hydrogel crosslinking chemistries exhibit some form of crossreactivity. The field of bioorthogonal chemistry has arisen to address the need for highly specific and robust reactions in biological contexts. Accordingly, bioorthogonal crosslinking strategies are incorporated into hydrogel design, allowing for gentle and efficient encapsulation of cells in various hydrogel materials. Furthermore, the selective nature of bioorthogonal chemistries can permit dynamic modification of hydrogel materials in the presence of live cells and other biomolecules to alter matrix mechanical properties and biochemistry on demand. This review provides an overview of bioorthogonal strategies used to prepare cell‐encapsulating hydrogels and highlights the potential applications of bioorthogonal chemistries in the design of dynamic engineered ECMs.  相似文献   

12.
Clinical percutaneous delivery of synthetically engineered hydrogels remains limited due to challenges posed by crosslinking kinetics—too fast leads to delivery failure, too slow limits material retention. To overcome this challenge, supramolecular assembly is exploited to localize hydrogels at the injection site and introduce subsequent covalent crosslinking to control final material properties. Supramolecular gels are designed through the separate pendant modifications of hyaluronic acid (HA) by the guest–host pair cyclodextrin and adamantane, enabling shear‐thinning injection and high target site retention (>98%). Secondary covalent crosslinking occurs via addition of thiols and Michael‐acceptors (i.e., methacrylates, acrylates, vinyl sulfones) on HA and increases hydrogel moduli (E = 25.0 ± 4.5 kPa) and stability (>3.5 fold in vivo at 28 d). Application of the dual‐crosslinking hydrogel to a myocardial infarct model shows improved outcomes relative to untreated and supramolecular hydrogel alone controls, demonstrating its potential in a range of applications where the precise delivery of hydrogels with tunable properties is desired.  相似文献   

13.
Marine sponges are used as biomonitors of heavy metals contamination in coastal environment as they process large amounts of water and have a high capacity for accumulating heavy metals. Here, inspired by the unique physical and physiological features of marine sponges, a surface engineered synthetic sponge for the highly efficient harvesting of uranium from natural seawater is developed. An ultrathin poly(imide dioxime) (PIDO)/alginate (Alg) interpenetrating polymer network hydrogel layer is uniformly wrapped around the skeleton of a melamine sponge (MS) substrate through a simple dipping–drying–crosslinking process, providing the hybrid MS@PIDO/Alg sponge with excellent uranium adsorption performance and sufficient mechanical strength to withstand the harsh conditions of practical applications. The maximum adsorption capacity reaches 910.98 mg‐U g‐gel‐1 for the PIDO/Alg hydrogel layer and 291.51 mg‐U g‐sponge‐1 for the whole hybrid MS@PIDO/Alg sponge in uranium‐spiked natural seawater. The adsorption capacity measured after 56 d of exposure in 5 tons of natural seawater is evaluated to be 5.84 mg‐U g‐gel‐1 (1.87 mg‐U g‐sponge‐1). This novel approach shows great promise for the mass production of high‐performance sponge adsorbent for uranium recovery from natural seawater and nuclear waste.  相似文献   

14.
Hydrogels find widespread applications in biomedical engineering due to their hydrated environment and tunable properties (e.g., mechanical, chemical, biocompatible) similar to the native extracellular matrix (ECM). However, challenges still exist regarding utilizing hydrogels in applications such as engineering 3D tissue constructs and active targeting in drug delivery, due to the lack of controllability, actuation, and quick‐response properties. Recently, magnetic hydrogels have emerged as a novel biocomposite for their active response properties and extended applications. In this review, the state‐of‐the‐art methods for magnetic hydrogel preparation are presented and their advantages and drawbacks in applications are discussed. The applications of magnetic hydrogels in biomedical engineering are also reviewed, including tissue engineering, drug delivery and release, enzyme immobilization, cancer therapy, and soft actuators. Concluding remarks and perspectives for the future development of magnetic hydrogels are addressed.  相似文献   

15.
Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain‐derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH‐responsive H‐bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer‐by‐layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month‐long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process.  相似文献   

16.
3D printing technology has been widely explored for the rapid design and fabrication of hydrogels, as required by complicated soft structures and devices. Here, a new 3D printing method is presented based on the rheology modifier of Carbomer for direct ink writing of various functional hydrogels. Carbomer is shown to be highly efficient in providing ideal rheological behaviors for multifunctional hydrogel inks, including double network hydrogels, magnetic hydrogels, temperature‐sensitive hydrogels, and biogels, with a low dosage (at least 0.5% w/v) recorded. Besides the excellent printing performance, mechanical behaviors, and biocompatibility, the 3D printed multifunctional hydrogels enable various soft devices, including loadable webs, soft robots, 4D printed leaves, and hydrogel Petri dishes. Moreover, with its unprecedented capability, the Carbomer‐based 3D printing method opens new avenues for bioprinting manufacturing and integrated hydrogel devices.  相似文献   

17.
Stimuli‐responsive hydrogels with decent electrical properties are a promising class of polymeric materials for a range of technological applications, such as electrical, electrochemical, and biomedical devices. In this paper, thermally responsive and conductive hybrid hydrogels are synthesized by in situ formation of continuous network of conductive polymer hydrogels crosslinked by phytic acid in poly(N‐isopropylacrylamide) matrix. The interpenetrating binary network structure provides the hybrid hydrogels with continuous transporting path for electrons, highly porous microstructure, strong interactions between two hydrogel networks, thus endowing the hybrid hydrogels with a unique combination of high electrical conductivity (up to 0.8 S m?1), high thermoresponsive sensitivity (significant volume change within several seconds), and greatly enhanced mechanical properties. This work demonstrates that the architecture of the filling phase in the hydrogel matrix and design of hybrid hydrogel structure play an important role in determining the performance of the resulting hybrid material. The attractive performance of these hybrid hydrogels is further demonstrated by the developed switcher device which suggests potential applications in stimuli‐responsive electronic devices.  相似文献   

18.
Shape‐morphing hydrogels have emerging applications in biomedical devices, soft robotics, and so on. However, successful applications require a combination of excellent mechanical properties and fast responding speed, which are usually a trade‐off in hydrogel‐based devices. Here, a facile approach to fabricate 3D gel constructs by extrusion‐based printing of tough physical hydrogels, which show programmable deformations with high response speed and large output force, is described. Highly viscoelastic poly(acrylic acid‐co‐acrylamide) (P(AAc‐co‐AAm)) and poly(acrylic acid‐coN‐isopropyl acrylamide) (P(AAc‐co‐NIPAm)) solutions or their mixtures are printed into 3D constructs by using multiple nozzles, which are then transferred into FeCl3 solution to gel the structures by forming robust carboxyl–Fe3+ coordination complexes. The printed gel fibers containing poly(N‐isopropyl acrylamide) segment exhibit considerable volume contraction in concentrated saline solution, whereas the P(AAc‐co‐AAm) ones do not contract. The mismatch in responsiveness of the gel fibers affords the integrated 3D gel constructs the shape‐morphing ability. Because of the small diameter of gel fibers, the printed gel structures deform and recover with a fast speed. A four‐armed gripper is designed to clamp plastic balls with considerable holding force, as large as 115 times the weight of the gripper. This strategy should be applicable to other tough hydrogels and broaden their applications.  相似文献   

19.
Many unique properties arise when the 3D stacking of layered materials is disrupted, originating nanostructures. Stabilization, and further reorganization of these individual layers into complex 3D structures, can be essential to allow these properties to persist in macroscopic systems. It is demonstrated that a simple hydrothermal process, assisted by ionic liquids (ILs), can convert bulk g‐C3N4 into a stable hydrogel. The gelation occurs through delamination of the layered structure, driven by particular interactions between the IL and the carbon nitride sheets, forming an amphiphilic foam‐like network. This study employs spectroscopic and computational tools to unravel the gelation mechanism, and provides a rational approach toward the stabilization of 2D materials in hydrogels. The solution‐processable hydrogels can also be used as building blocks of complex devices. Chemiresistive gas sensors employing g‐C3N4 3D hydrogels exhibit superior response at room temperature, enabling effective gas sensing under low power conditions.  相似文献   

20.
Myocardial infarction (heart attack) is the number‐one killer of heart patients. Existing treatments do not address cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, the invention of a poly(l‐lactic acid)‐b‐poly(ethylene glycol)‐b‐poly(N‐Isopropylacrylamide) copolymer and its self‐assembly into nanofibrous gelling microspheres (NF‐GMS) is reported. The NF‐GMS undergo a thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM‐mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC‐derived CMs carried by NF‐GMS leads to a striking tenfold graft size increase over direct CM injection in rats, which is the highest reported engraftment to date. Furthermore, NF‐GMS‐carried CM transplantation dramatically reduces infarct size, enhances integration of transplanted CMs, stimulates vascularization in the infarct zone, and leads to a substantial recovery of cardiac function. The NF‐GMS may also be utilized in a variety of biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号