首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

2.
Blends of bisphenol-A polycarbonate (PC) and polystyrene (PS) prepared by screw extrusion and solution casting have been investigated with weight fractions of PC in the blends varying from 0.95 to 0.05. From the measured glass transition temperatures (Tg) and specific heat increments (ΔCp) at the Tg, the polystyrene appears to dissolve more in the PC phase than does the PC in the PS phase. The blend appears to be near eqilibrium under extrusion conditions so that the polymer–polymer interaction parameter of PC/PS blends was calculated and found to be 0.038±0.004 for extruded blends at 250°C. Scanning electron microscopy supports the conclusion that the compatibility increases more in the region of PS-rich compositions than in the regions of PC-rich compositions of the PC/PS blends.  相似文献   

3.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
The miscibility of polychloroprene rubber (CR) and ethylene–propylene–diene terpolymer rubber (EPDM) was studied over the entire composition range. Different blend compositions of CR and EPDM were prepared by initially mixing on a two‐roll mill and subsequently irradiating to different gamma radiation doses. The blends were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurement, hardness measurement, and solvent permeability analysis. The compatibility of the blends was studied by measuring the glass transition temperature and heat capacity change of the blends. The immiscibility of blends was reflected by the presence of two glass transition temperatures; however, partial miscible domains were observed due to inter diffusion of phases. Permeation data fitted best with the Maxwell's model and indicated that in CR‐EPDM blends, EPDM exists as continuous phase with CR as dispersed phase for lower CR weight fractions and phase inversion occurred in 40–60% CR region. It was observed that CR improved oil resistance of EPDM; however, the effect was prominent for blends of >20% CR content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Acrylonitrile‐co‐styrene‐co‐methylmethacrylate (AN‐S‐MMA) terpolymer was prepared by bulk and emulsifier‐free emulsion polymerization techniques. The bulk and emulsion terpolymers were characterized by means of Fourierr transform infrared spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography, thermal gravimetric analysis, and elemental analysis. The kinetics of the terpolymerization were studied. The terpolymers were then incorporated into butadiene—acrylonitrile rubber (NBR)/ethylene propylene diene monomer rubber (EPDM) blends and into chloroprene rubber (CR)/EPDM blend. The terpolymers were then tested for potential as compatibilizers by using scanning electron microscopy and differential scanning calorimetry. The terpolymers improved the compatibility of CR/EPDM and NBR/EPDM blends. The physicomechanical properties of CR/EPDM and NBR/EPDM blend vulcanizates revealed that the incorporation of terpolymers was advantageous, since they resulted in blend vulcanizates with higher 100% moduli and with more thermally stable mechanical properties than the individual rubbers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3143–3153, 2003  相似文献   

7.
N‐Chlorothiosulfonamides have been used to modify ethylene‐propylene‐diene rubber (EPDM) to enhance the compatibility of EPDM in, e.g., natural rubber (NR)/butadiene rubber (BR)/EPDM blends for ozone resistance. N‐Chlorothio‐N‐butyl‐benzenesulfonamide (CTBBS) was selected as a representative for N‐chlorothiosulfonamides. In this study, we found that CTBBS behaves differently with various types of EPDM. Three types of EPDM were selected: ethylidene norbornene (ENB)‐EPDM, hexadiene (HD)‐EPDM, and dicyclopentadiene (DCPD)‐EPDM. HD‐EPDM showed the greatest effectiveness toward CTBBS‐modification. However, this EPDM is not commercially available anymore. On the opposite side, DCPD‐EPDM showed the lowest reactivity so that almost no modification could be realized. The result with ENB‐EPDM was, that upon application of CTBBS to ENB‐EPDM, gelation occurred and, therefore, a low amount of modification was achieved. With the limited modification efficiency for ENB‐EPDM, there is no significant improvement when applying the modified ENB‐EPDM into NR/BR/EPDM blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Polybutadiene rubber (BR) was blended with ethylene‐propylene diene (EPDM) rubber on rubber mill with different weight ratios (100/0‐70/30‐50/50‐30/70‐0‐100), then application of gamma rays at different irradiation doses from 25 up to 150 kGy to induce crosslinking. Mechanical, physio‐chemical, and characterization of prepared blends are to be followed up as functions of the blend composition and the radiation absorbed dose. Mechanical properties like tensile strength (TS), elongation at break (Eb), and tensile modulus (M100) were increased with increasing content of EPDM in blend composition. On the other hand, TS and M100 increased with radiation dose, whereas the value of Eb decreased with radiation dose. Physico‐chemical properties like gel fraction and volume fraction of rubber in swollen gel (Vr) increased with increasing the content of EPDM rubber in blend formulation while the swelling ratio and soluble fraction decreased with increasing content of EPDM. On the other hand, the Vr increased with radiation dose, whereas the values of soluble fraction and selling ratio (Q) decreased with radiation dose. Fourier transforms‐infrared measurements confirmed the compatibility between BR and EPDM rubber moieties in the blend matrix. J. VINYL ADDIT. TECHNOL., 25:E64–E72, 2019. © 2018 Society of Plastics Engineers  相似文献   

9.
A thermally stimulated current (TSC) was used to study the relaxation of polystyrene (PS), the ethylene–propylene diene monomer (EPDM), and the grafted copolymer of EPDM with styrene (EPDM-g-St). The effect of the measuring conditions on the relaxation of PS is discussed. Some relaxation parameters of PS, EPDM, and EPDM-g-St were calculated in two different ways. In addition, the TSC spectra of PS/EPDM and PS/EPDM-g-St showed that PS/EPDM was an immiscible system, but there existed a special interaction between the plastic phase and the rubber one in PS/EPDM-g-St blends. The compatibility of PS blends was evaluated in terms of their compositions. The results of inverse gas chromatography (IGC) agreed well with those of the TSC measurements. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1199–1204, 1998  相似文献   

10.
Poly(o‐toluidine) (POT) is an electroactive polymer with poor mechanical and thermal characteristics. We examined the scope for improving such properties by making blends of POT with ethylene–propylene–diene rubber (EPDM). We prepared POT–EPDM blends containing different weight fractions of POT by intimately mixing known volumes of separate solutions of the two polymers (POT in THF and EPDM in toluene). Films of EPDM and POT–EPDM blends in solution were obtained by spreading, solvent evaporation, and film casting techniques. POT, EPDM, and their blends were characterized in solution by ultraviolet‐visible spectroscopy, and the respective dried samples were analyzed by Fourier transform infrared spectroscopy and thermogravimetry. The polymer samples were further analyzed morphologically by scanning electron microscopy, and their tensile strengths were also evaluated. Spectroscopic and thermal studies of the blends indicated some sort of interaction between the two constituent polymers. The direct current electrical conductivity of the blends in increasing order of POT loading (12.5–100%) was in the range 9.9 × 10?5 to 11.6 × 10?2 S cm?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2550–2555, 2003  相似文献   

11.
In nuclear applications, ethylene propylene diene monomer (EPDM) rubber is the material of choice as gaskets and O‐rings due to its radiations resistance. In nuclear fuel reprocessing, in addition to radiation, the elastomeric components have to withstand paraffinic hydrocarbons as well. But, EPDM has poor resistance to hydrocarbons. To enhance the durability of EPDM in such environments, EPDM–chlorobutyl rubber (CIIR) blends of varying compositions were developed and characterized for mechanical, thermal, dielectric, and solvent sorption behavior. Spectroscopic and morphological analysis was used to evaluate the compatibility of blends. Due to synergistic effect, the optimal composition of blends with superior mechanical properties and solvent resistance were found to be 60% to 80% EPDM and 20% to 40% CIIR. The optimized blends were irradiated with gamma rays at cumulative doses up to 2 MGy. Based on spectroscopic, morphological, mechanical, thermogravimetric, and sorption properties, blend containing 80% EPDM was found to have superior retention of properties after irradiation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45195.  相似文献   

12.
Tensile yield behavior of the blends of polypropylene (PP) with ethylene‐propylene‐diene rubber (EPDM) is studied in blend composition range 0–40 wt % EPDM rubber. These blends were prepared in a laboratory internal mixer by simultaneous blending and dynamic vulcanization. Vulcanization was performed with dimethylol phenolic resin. For comparison, unvulcanized PP/EPDM blends were also prepared. In comparison to the unvulcanized blends, dynamically vulcanized blends showed higher yield stress and modulus. The increase of interfacial adhesion caused by production of three‐dimensional network is considered to be the most important factor in the improvement. It permits the interaction of the stress concentrate zone developed at the rubber particles and causes shear yielding of the PP matrix. Systematic changes with varying blend composition were found in stress‐strain behavior in the yield region, viz., in yield stress, yield strain, width of yield peak, and work of yield. Analysis of yield stress data on the basis of the various expressions of first power and two‐thirds power laws of blend compositions dependence and the porosity model led to consistent results from all expression about the variation of stress concentration effect in both unvulcanized and vulcanized blend systems. Shapes and sizes of dispersed rubber phase (EPDM) domains at various blend compositions were studied by scanning electron microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2104–2121, 2000  相似文献   

13.
In order to broaden the applications of waste silicone rubber composite insulator powder (WSP), modified waste powder (WSP‐KH570) was prepared by a two‐step treatment process involving improved surface oxidation approach by using acidic H2O2 solution and subsequently grafting of KH570. Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR‐ATR) analysis revealed the presence of KH570 on the powder surface. The result was confirmed by thermogravimetric analysis (TGA). Blends of ethylene propylene diene monomer (EPDM) with WSP‐KH570 were prepared. The effects of WSP‐KH570 on mechanical properties and thermal properties of the blends were investigated. The WSP‐KH570 showed an observed improvement in tensile strength and elongation at break of EPDM/WSP‐KH570 blends compared with corresponding compositions of EPDM/WSP blends. The TGA cure showed that EPDM filled with WSP‐KH570 had higher thermal stability at 210–380 °C than EPDM/WSP. Dynamic mechanical analysis indicated EPDM and WSP‐KH570 were better miscible with the blend ratio (90/10). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45438.  相似文献   

14.
Bioblends of the biodegradable copolyester poly(tetramethyleneadipate‐co‐terephthalate) (EBU) and polystyrene (PS) were prepared in different weight compositions on a twin‐screw extruder at 160–200°C. The various bioblend compositions were then investigated using thermogravimetric analysis (TGA), modulated differential scanning calorimetry (MDSC), and Fourier transform infrared photoacoustic spectroscopy (FTIR‐PAS). TGA studies showed that 25/75 and 50/50 EBU/PS blends had higher thermal stability than the more thermally stable blend component, PS. The MDSC studies showed a single Tg and single Tm for the blends, that were concentration independent. The FTIR‐PAS studies indicated a small shift (4–8 cm?1) in the carbonyl absorption peaks of EBU to lower wavenumbers in 50/50 EBU/PS blend relative to that of neat EBU. It is concluded that, while the MDSC results were inconclusive, the TGA and FTIR‐PAS results support the existence of some degree of intermolecular interaction between EBU and PS components and, hence, partial compatibility in EBU/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Differential scanning calorimetry (DSC) and positron annihilation lifetime measurements have been carried out to study the effect of the compatibilizer maleic anhydride grafted ethylene propylene copolymer (EPM‐g‐MA) in poly trimethylene terephthalate and ethylene propylene diene monomer (PTT/EPDM) immiscible blends. The DSC results for the blends of 50/50 and 30/70 compositions show two clear glass transition temperatures, indicating that the blends are two‐phase systems. With the addition of compatibilizer, the separation between the two glass transitions decreased, suggesting an increased interaction between the blend components with compatibilizer. At 5 wt % of compatibilizer, the separation between the Tgs reduced in both 50/50 and 30/70 blends. The positron results for the blends without compatibilizer showed an increase in relative fractional free volume, as the EPDM content in the blend is increased. This suggests the coalescence of free volume of EPDM with the free volumes of PTT due to phase separation. However, the effect of compatibilizer in the blends was clearly seen with the observed minimum in free volume parameters at 5% of the compatibilizer, further suggesting that this percent of compatibilizer seems to be the optimum value for these blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 740–747, 2006  相似文献   

16.
Blends of ethylene propylene diene rubber (EPDM) and thermoplastic polyurethane (TPU) have been studied to understand the compatibility and morphology. The study was initially done with unmodified EPDM and subsequently with modified EPDM through maleation process. Mechanical properties of unmodified EPDM blends are improved with the addition of TPU. However, the appearance of two T gs even at lower concentrations of PU in the blends indicates that the blends are incompatible. Blends of maleated EPDM with TPU showed a single T g and further improvement in mechanical properties which is attributed to the improvement in compatibility as also confirmed by SEM analysis.  相似文献   

17.
Different hydroxyl content poly(styrene‐cop‐(hexafluoro‐2‐hydroxylisopropyl)‐α‐methylstyene) [PS(OH)‐X] copolymers were synthesized and blends with 2,2,6,6‐tetramrthyl‐piperdine‐1‐oxyl end spin‐labeled PEO [SLPEO] were prepared. The miscibility behavior of all the blends was predicted by comparing the critical miscible polymer–polymer interaction parameter (χcrit) with the polymer–polymer interaction parameter (χ). The micro heterogeneity, chain motion, and hydrogen bonding interaction of the blends were investigated by the ESR spin label method. Two spectral components with different rates of motion were observed in the ESR composite spectra of all the blends, indicating the existence of microheterogeneity at the molecular level. According to the variations of ESR spectral parameters Ta, Td, ΔT, T50G and τc, with the increasing hydroxyl content in blends, it was shown that the extent of miscibility was progressively enhanced due to the controllable hydrogen bonding interaction between the hydroxyl in PS(OH) and the ether oxygen in PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2312–2317, 2004  相似文献   

18.
Morphologies of polyethylene–ethylene/propylene/diene monomer (PE/EPDM) particles in 93/7 polypropylene (PP)/PE blends were investigated. SEM micrographs of KMnO4‐etched cut surfaces and fracture surfaces of the blends revealed the existence of the “flake” structure. In the particles, crystalline PE formations with flake shape, which remain after etching, are called flakes. In addition to the PE‐crystalline flakes, amorphous PE, located between PE crystalline lamellae and EPDM rubber, complement the flake structure. The flakes are usually linked with the PP matrix, as seen in the heptane‐treated cut surfaces. These links, although observed with compatibilized samples, originate from the crystalline nature of PE particles, if no compatibilizer is added. Separately, the morphology of Royalene (consisting of high‐density PE and EPDM rubber, used as a PP/PE compatibilizer) was investigated by low‐voltage scanning TEM. The interaction of the components in the PE/EPDM blends can explain the formation of the flakes and toughening of the PP/PE blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3087–3092, 2003  相似文献   

19.
Amylopectin (AP), a potato‐starch‐based polymer with a molecular weight of 6,000,000 g/mol, was blended with poly(ε‐caprolactone) (PCL) and characterized with inverse gas chromatography (IGC), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD). Five different compositions of AP–PCL blends ranging from 0 to 100% AP were studied over a wide range of temperatures (80–260°C). Nineteen solutes (solvents) were injected onto five chromatographic columns containing the AP–PCL blends. These solutes probed the dispersive, dipole–dipole, and hydrogen‐bonding interactions, acid–base characteristics, wettability, and water uptake of the AP–PCL blends. Retention diagrams of these solutes in a temperature range of 80–260°C revealed two zones: crystalline and amorphous. The glass‐transition temperature (Tg) and melting temperature (Tm) of the blends were measured with these zones. The two zones were used to calculate the degree of crystallinity of pure AP and its blends below Tm, which ranged from 85% at 104°C to 0% at Tm. IGC complemented the DSC method for obtaining the Tg and Tm values of the pure AP and AP–PCL blends. These values were unexpectedly elevated for the blends over that of pure AP and ranged from 105 to 152°C for Tg and from 166 to 210°C for Tm. The Tm values agreed well with the XRD analysis data. This elevation in the Tg and Tm values may have been due to the change in the heat capacity at Tg and the dependence of Tg on various variables, including the molecular weight and the blend composition. Polymer blend/solvent interaction parameters were measured with a variety of solutes over a wide range of temperatures and determined the solubility of the blends in the solutes. We were also able to determine the blend compatibility over a wide range of temperatures and weight fractions. The polymer–polymer interaction coefficient and interaction energy parameter agreed well on the partial miscibility of the two polymers. The dispersive component of the surface energy of the AP–PCL blends was measured with alkanes and ranged from 16.09 mJ/m2 for pure AP to 38.26 mJ/m2 when AP was mixed with PCL in a 50/50% ratio. This revealed an increase in the surface energy of AP when PCL was added. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3076–3089, 2006  相似文献   

20.
The covulcanization characteristics, mechanical properties, compatibility, and hot‐air aging resistance of hydrogenated nitrile‐butadiene rubber (HNBR)/ethylene‐propylene‐diene rubber (EPDM) blends cured with either sulfur or dicumyl peroxide (DCP) were studied. The difference between MH and ML (MH ? ML), rheometer graphs, selective swelling and a dynamic mechanical analysis of HNBR/EPDM blends confirmed that the peroxide curing system gives better covulcanization characteristics than the sulfur curing system and peroxide exhibited higher crosslink efficiency on EPDM while sulfur showed larger crosslink efficiency on HNBR. Dynamic mechanical analysis and morphology indicated that the compatibility between HNBR and EPDM is limited. Tensile strength and elongation at break of the sulfur‐cured blends are greater than those obtained with peroxide and increase with the HNBR fraction. The blends crosslinked with peroxide retain their tensile strength but not their elongation at break after hot air ageing better than blends vulcanized by sulfur. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号