首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Precipitation polymerization of 2‐(methacryloyloxyethyl) trimethyl ammonium chloride (DMC)‐co‐acrylamide (AM) [poly(AM‐DMC)] has been successfully performed in potassium carbonate (K2CO3)‐water media by plasma initiation. K2CO3 solution was selected because not only the higher solubility of AM and DMC comparing with that of poly(AM‐DMC), but the higher intrinsic viscosity of poly(AM‐DMC) could be obtained. A set of experiments was performed using different K2CO3 concentration (from 50 down to 10% (w/w)), thus the precipitation architecture was not obtained below 20% (w/w). And particles size, particles size distribution (7–120 μm), and intrinsic viscosity of poly(AM‐DMC) (ranging up to 455 cm3/g) were also summarized in this article. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4060–4067, 2007  相似文献   

2.
Copolymer particles consisting of acrylamide (AM) and cationic comonomer 2‐methyl acryloyloxyethyl trimethyl ammonium chloride (DMC) were prepared by precipitation polymerization in an solution of potassium citrate using ammonium persulfate ((NH4)2S2O8) and sodium sulfite (Na2SO3) as an initiator. The product poly(acrylamide‐2‐methyl acryloyloxyethyl trimethyl ammonium chloride) [Poly(DMC‐AM)] is a water‐soluble cationic polyelectrolyte. The solubility of DMC, AM and Poly(DMC‐AM) in potassium citrate solution were measured, combined with the theory of solubility parameter, and the experiment results indicate that the solubility of DMC and AM is much higher than that of Poly(DMC‐AM), and also the mechanism of copolymer precipitated in salt solution was discussed. The factors influencing the conversion of comonomers were examined, such as salt mass fraction, polymerization temperature, monomers mass fraction, initiator mass fraction, and so on. The results of experiments indicate that the best conditions are salt mass fraction = 57%, monomers mass fraction = 3%, m(DMC) : m(AM) = 3 : 1, initiator mass fraction = 0.08%, polymerization temperature = 50°C, reaction time = 2 h, and the conversion is 86.4%. And the qualitative analysis experimental method for copolymer by infrared absorption spectrum show that [Poly(DMC‐AM)] was successfully synthesized by precipitation polymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
In this work, two monomers, acrylamide (AM) and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension initiated by free radical copolymerization in the presence of potassium persulfate. The impact of copolymerization conditions on the charge density and molecular weight of the copolymers was investigated. The molecular weight and mass balance analyses confirmed that the homopolymer [polyDMC (PDMC) and polyAM (PAM)] and undesired copolymer (AM–DMC) productions dominated as time, initiator, and DMC dosage increased more than the optimum values. The activation energy of the polymerization of KL and AM (43.02 kJ mol?1), KL and DMC (21.99 kJ mol?1), AM (14.54 kJ mol?1), DMC (10.34 kJ mol?1), and AM and DMC (18.13 kJ mol?1) was determined. Proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirmed the production of KL–AM–DMC copolymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46338.  相似文献   

4.
This study prepared TPDA, a high‐intrinsic‐viscosity cationic polyacrylamide, through ultraviolet (UV)‐initiated template polymerization. Acrylamide (AM) and diallyldimethylammonium chloride (DMD) served as monomers, and poly sodium polyacrylate (PAAS) served as the template. The structure of TPDA was characterized by Fourier‐transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The synthetic conditions of TPDA were studied and optimized by single‐factor experiments. An optimized product was obtained at an intrinsic viscosity of 11.3 dL g?1 and a conversion rate of 97.2% with a total monomer concentration of 20%, DMD concentration of 30%, initiator concentration of 0.045%, pH of 8, EDTA concentration of 0.3%, and UV irradiation of 90 min. Results showed that TPDA was the copolymer of AM and DMD with a micro‐block structure at the molecular chain. Given its high intrinsic viscosity and cationic block structure, TPDA performed better in kaolin flocculation than that prepared without template addition. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41747.  相似文献   

5.
Using aqueous solution of ammonium sulfate as medium, acrylamide (AM) and dimethylaminoethyl methacrylate methyl chloride (DMC) as main raw materials, poly(dimethylaminoethyl methacrylate methyl chloride) (PDMC) as stabilizer and 2,2′‐azobis (2‐amidinopropane) dihydrochloride (V‐50) as initiator, the cationic polyelectrolyte of P(DMC‐AM) was synthesized by aqueous dispersion polymerization. The effects of the major reaction variables on synthesis conditions, product characteristics (particle size and molecular weight), and polymerization rate were investigated. The polymerization was retarded by the presence of the ammonium sulfate. The optimum reaction conditions for obtaining a stable aqueous dispersion were concentrations of 1.8 × 10?4–7.0 × 10?4 mol L?1 for V‐50, 1.5–3.5% for stabilizer, and 23.2–30.0% for salt. The molecular weight of PDMC formed was 1.5 × 105 to 7.0 × 105. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
In this work, cationic cellulose (CC) with different degrees of substitution (DS) was successfully synthesized by the reaction between cellulose and 3‐chloro‐2‐hydroxypropyl‐trimethylammonium chloride (CHPTAC) in a 7 wt % NaOH and 12 wt % urea aqueous solution. The structure of the CC was characterized by using elemental analysis, 1H‐NMR, and FTIR. The DS values of CC ranged between 0.18 and 0.50, which could be obtained by adjusting the reaction temperature, reaction time, and molar ratio of CHPTAC to anhydroglucose unit of cellulose. The cationic cellulose–graft–polyacrylamide flocculant (CC‐g‐PAM) based on CC and polyacrylamide (PAM) was also synthesized in a homogeneous aqueous solution. The flocculation characteristics of CC and CC‐g‐PAM were evaluated in a kaolin suspension. The results showed that CC‐g‐PAM was an effective flocculant for the kaolin suspension under acidic or neutral conditions, and the flocculation efficiency was over 90%, while the CC showed better flocculation performance under alkaline conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43106.  相似文献   

7.
The cycloterpolymerizations of diallyldimethylammonium chloride, 3‐(N,N‐diallylammonio)propanesulfonate, and sulfur dioxide afforded a series of pH‐responsive cycloterpolymers in excellent yields. The solution properties of these ionic polymers were controlled by the composition of the monomeric units; exhibiting dominance either in polyzwitterionic or cationic character. The unquenched valency of nitrogen in the monomeric units of the sulfobetaine zwitterions has permitted these cationic/zwitterionic polymers to be converted into a series of polyampholytes with a charge asymmetry arising out of excess of either the cationic or anionic centers. The water‐solubility of these polymers, upon low‐ and high‐salt (NaCl) additions has been investigated to provide critical solution concentrations to promote water‐insolubility and ‐solubility. A series of associating polymers of the above two monomers and SO2 with a hydrophobic incorporation of 3–7 mol % of diallyloctadecylammonium chloride has also been synthesized. The solubility and viscosity of the hydrophobically modified polymers in the polyampholytic form were increased considerably in the presence of anionic surfactant sodium dodecyl sulfate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Poly(diallyldimethyl ammonium chloride–vinyl trimethoxysilane) [P(DADMAC–VTMS)] and poly(diallyldimethyl ammonium chloride–acrylamide–vinyl trimethoxysilane) [P(DADMAC–AM–VTMS)], the latter a new cationically charged and hydrophobically modified flocculant, were obtained by radical polymerization initiated by potassium persulfate. The effects of the vinyl trimethoxysilane (VTMS) feed ratio on the intrinsic viscosity and solubility of the polymers were examined. The effects of the flocculants on turbidity removal, decolorization, and oil removal in water treatment were also studied. The introduction of VTMS increased the intrinsic viscosities of P(DADMAC–VTMS) and P(DADMAC–AM–VTMS) in comparison with the viscosities of poly(diallyldimethyl ammonium chloride) and poly(diallyldimethyl ammonium chloride–acrylamide), respectively, but reduced their solubilities. The introduction of VTMS also enhanced the flocculation properties of P(DADMAC–VTMS) and P(DADMAC–AM–VTMS), including turbidity removal, decolorization, and oil removal. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 335–342, 2002; DOI 10.1002/app.10339  相似文献   

9.
以丙烯酰胺(AM)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)、二甲基二烯丙基氯化铵(DMDAAC)为单体原料,采用水溶液聚合技术制备了粉末型阳离子三元聚合物P(AM/DMC/DMDAAC)。采用红外光谱、核磁共振和热重分析对所制备阳离子聚合物进行了结构和组成表征,并利用电导率仪和布氏黏度计对其溶解性及其溶液黏度进行了测定。结果表明:合成的产物为P(AM/DMC/DMDAAC),具有良好的热稳定性和溶解性。三元聚合物的表观黏度随着聚合物质量浓度的增加先减小后增加,随剪切速率的增加而下降。在不同的外加盐溶液里,三元聚合物溶液表现出明显的反聚电解质行为。  相似文献   

10.
In this study, a kind of anionic polyacrylamide (P(AM‐AA‐AMPS)) was synthesized using acrylamide (AM), acrylic acid (AA), and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) under ultraviolet (UV) irradiation. The conditions of the polymerization reaction such as monomer mass ratio, solution pH value, EDTA concentration and urea concentration were investigated by using the single factor approach and an L16 (45) orthogonal array. The structure and morphologies of the copolymer were determined by nuclear magnetic resonance spectrometer (NMR), infrared spectrometer (IR) and scanning electron microscope (SEM). The results show P(AM‐AA‐AMPS) with the intrinsic viscosity of 1.5 × 103 mL g?1 was synthesized at optimal conditions: mass ratio, m(AM) : m(AA) : m(AMPS) of 70 : 10 : 10, pH value of 9.0, EDTA concentration of 0.10% and urea concentration of 0.20%. In addition, P(AM‐AA‐AMPS) had better flocculation efficiency than commercial PAM in sludge dewatering experiment; the minimum filter cake moisture content could be reduced to 65.1%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
A new cation‐modified Al‐polyacrylamide (CAPAM) flocculant was prepared by the in situ polymerization of acrylamide (AM) and (2‐methacryloyloxyethyl) trimethyl ammonium chloride (DMC) with Al(OH)3 sol. The optimum preparation conditions were obtained by a one‐factor experimental design: as the amount of AlCl3 was fixed at 0.025 mol, the polymerization time, polymerization temperature, n(AM) : n(AlCl3), n(DMC) : n(AlCl3), and n(K2S2O8) : n(AM) were 4 h, 70°C, 8, 0.9, and 1.82 × 10?3, respectively. The CAPAM was characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The solid–liquid separation performance of the CAPAM was evaluated in terms of water content. The CAPAM showed better flocculation performance than cationic polyacrylamide and polyaluminum sulfate at a fixed concentration of 0.3% in waste drilling fluid and tended to perform well in alkaline solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41641.  相似文献   

12.
A water‐soluble acrylamide hydrophobically associating terpolymer for polymer flooding was successfully synthesized via free radical polymerization using acrylamide (AM), acrylic acid (AA), and N,N‐divinylnonadeca‐1,10‐dien‐2‐amine (DNDA) as raw materials. The terpolymer was characterized by IR spectroscopy and fluorescence spectra. Compared with partially hydrolyzed polyacryamide (HPAM), the terpolymer showed a stronger link and better dimensional network structure under the environmental scanning electron microscope (ESEM). The results of rheology indicated that the terpolymer (AM‐NaAA‐DNDA) showed an excellent shear‐resistance in high shear rate (1000 s?1) and remarkable temperature‐tolerance (above 110°C). The salt‐resisting experiment revealed that this terpolymer had a better anti‐salt ability. According to the core flooding test, it could be obtained that oil recovery was enhanced more than 15% under conditions of 2000 mg/L terpolymer in the mineralization of 8000 mg/L at 60°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A novel cationic polyacrylamide modified with fluorinated acrylate had been synthesized of acrylamide (AM), methacryloxyethyl trimethylammonium chloride (DMC), and 2-(perfluorooctyl)ethyl acrylate (FEA) by free radical micellar copolymerization in aqueous solution utilizing cetyl trimethylammonium bromide (CTAB) as the surfactant and potassium persulfate (KPS)/sodium bisulfite (SBS) as the redox initiator. Some factors affecting synthesis, such as the amount of FEA, CTAB, and KPS, were described. Surface activity and flocculation of the polymer were studied. The results showed that with the incorporation of FEA, the intrinsic viscosity decreased until the modified polymer was not able to dissolve in water; and with the increase of CTAB and KPS, the intrinsic viscosity decreased firstly then increased slowly. The polymer exhibited good surface activity in both water and salt solution. Its flocculation properties were evaluated with kaolin suspensions using a standard jar test. The results demonstrated the superiority of the copolymer over the no-modified cationic polyacrylamide as a flocculant.  相似文献   

14.
Yi Dan  Qi Wang 《Polymer International》2001,50(10):1109-1114
A homogeneous complex solution, formed through inter‐polyelectrolyte complexation of poly(acrylamide‐co‐acrylic acid) (P(AM‐AA)) with poly(acrylamide‐co‐dimethyldiallylammonium chloride) (P(AM‐DMDAAC)) and interaction of the P(AM‐AA)/P(AM‐DMDAAC) complex with M n+ hydrated metal ion, was prepared and the structure and properties of the P(AM‐AA)/P(AM‐DMDAAC)/M n+ homogeneous complex solution were studied by UV spectrometry, dynamic light scattering and viscometry. The experimental results show that the homogeneous complex solution can be obtained by controlling the composition of the P(AM‐AA)/P(AM‐DMDAAC) complex and the M n+ metal ion content. Compared to the constituents, ie the P(AM‐AA) solution, the P(AM‐DMDAAC) solution and the P(AM‐AA)/P(AM‐DMDAAC) complex solution, the P(AM‐AA)/P(AM‐DMDAAC)/M n+ complex solution has a new peak at 270 nm in its UV spectrum, a larger hydrodynamic radius, and hence a higher solution viscosity, all of which indicate that there exist specific interactions between polymers and M n+ metal ions. These interactions lead to the formation of a network structure and hence an obvious increase not only in solution viscosity but also in resistance of the polymer solution to simple salts, to temperature changes and to shearing. © 2001 Society of Chemical Industry  相似文献   

15.
A novel, hydrophobically modified cationic polyacrylamide (HMPAM) was synthesized via the copolymerization of acrylamide, diallyl dimethyl ammonium chloride (DMDAAC), and diallylmethyl dehydroabietic acid propyl ester ammonium bromide. Optimum conditions for preparing HMPAM were such that the amount of initiator was 0.075 wt % of the total monomer mass, the monomer concentration was 20 wt %, and the amount of DMDAAC was 18 mol % of the total monomer molar mass. HMPAM was characterized with an UV–visible spectrometer, 1H‐NMR, Ubbelohde viscometer, rotational viscometer, and rotational rheometer. HMPAM solutions exhibited strong hydrophobic associations, and the critical association concentration of the HMPAM aqueous solution was about 0.7 wt %; the HMPAM solutions also showed salt thickening and shear resistance. The surface morphologies of the freeze‐dried HMPAM samples (1 wt %) were also observed via scanning electron microscopy. Compared with unmodified cationic polyacrylamide, Synthesis of HMPAM‐0.5 exhibited a stronger flocculation capacity, and the optimal transmittance of the supernatants was above 95%. HMPAM‐0.5 showed significant flocculation performances for 3–4 and 3–5 wt % kaolin suspensions at 40 and 50 mg/L, respectively. Moreover, the flocculation performance was enhanced with the addition of NaCl and CaCl2. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46637.  相似文献   

16.
采用氧化还原引发体系、利用半绝热水溶液聚合的方法,制备甲基丙烯酰氧乙基三甲基氯化铵-二甲基二烯丙基氯化铵-丙烯酰胺(DMC-DMDAAC-AM共聚物)阳离子型絮凝剂,研究了单体配比、阳离子摩尔分数、引发剂用量以及助剂配比对产品性能的影响,详细研究了产品的特性黏度和溶解性能的影响因素.在单体配比不变的条件下,提高了产物的阳离子度,从而提高了产物的絮凝性能.结合均匀设计对实验进行分析表明,最佳的反应物摩尔分数为丙烯酰胺:16.72%,甲基丙烯酰氧乙基三甲基氯化铵:12.84%,二甲基二烯丙基氯化铵:13.56%,去离子水:53.64%,乙二胺四乙酸二钠:0.003 12%,偶氮二异丁脒盐酸盐:0.044 22%,过硫酸钠:0.001 82%,甲醛合次硫酸氢钠二水:0.001 76%.并利用红外光谱和棱磁对合成的共聚物进行了结构表征.  相似文献   

17.
Chemometrics was employed to study the effect of various reaction conditions on the graft copolymerization of acrylamide (AM) and diallyl dimethylammonium chloride (DADMAC) onto guar gum using the cerous sulfate and potassium persulfate complex initiation system. A two level full factorial design was used to study the effect of reaction parameters on percentage grafting (%G) and monomer conversion (%MC). Synthesized polymers were characterized using Fourier transform infrared spectroscopy (FTIR), 1H‐NMR (nuclear magnetic resonance spectroscopy), and 13C‐NMR and also were analyzed for differences in intrinsic viscosity and charge incurred with changing reaction conditions. The concentration of AM was observed to have the greater effect on %grafting. Interaction effects between the reaction temperature and concentration of AM were also found to be important. Under the reaction condition studied, the highest grafting (%G) was obtained for polymer 1 (0.7M AM concentration, 60°C reaction temperature, and 1M acid concentration). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Low‐charge‐density amphoteric copolymers and terpolymers composed of AM, the cationic comonomer (3‐acrylamidopropyl)trimethyl ammonium chloride, and amino acid derived monomers (e.g., N‐acryloyl valine, N‐acryloyl alanine, and N‐acryloyl aspartate) have been prepared via free‐radical polymerization in aqueous media. These terpolymers with random charge distributions have been compared to terpolymers of like compositions containing the anionic comonomer sodium 3‐acrylamido‐3‐methylbutanoate. Terpolymer compositions determined by 13C‐ and 1H‐NMR spectroscopy, terpolymer molecular weights and polydispersity indices obtained via size exclusion chromatography/multi‐angle laser light scattering, and hydrodynamic dimensions determined via dynamic light scattering have allowed a direct comparison of the fundamental parameters affecting the behavioral characteristics. The solution properties of low‐charge‐density amphoteric copolymers and terpolymers have been studied as functions of the solution pH, ionic strength, and polymer concentration. The low‐charge‐density terpolymers display excellent solubility in deionized water with no phase separation. The charge‐balanced terpolymers exhibit antipolyelectrolyte behavior at pH values greater than or equal to 6.5 ± 0.2. As the solution pH decreases, these charge‐balanced terpolymers become increasingly cationic because of the protonation of the anionic repeat units. The aqueous solution behavior (i.e., globule‐ to‐coil transition at the isoelectric point in the presence of salt and globule elongation with increasing charge asymmetry) of the terpolymers in the dilute regime correlates well with that predicted by the polyampholyte solution theories. An examination of the comonomer charge density, hydrogen‐bonding ability, and spacer group (e.g., the moiety separating the ionic group from the polymer chain) indicates that conformational restrictions of the sodium 3‐acrylamido‐3‐methylbutanoate and N‐acryloyl valine segments result in increased chain stiffness and higher solution viscosities in deionized water and brine solutions. On the other hand, the terpolymers with N‐acryloyl alanine and N‐acryloyl aspartate segments are more responsive to changes in the salt concentration. An assessment of the effects of the terpolymer structure on the viscosity under specified conditions of the ionic strength and pH from these studies should allow for rational design of optimized systems for enhanced petroleum recovery. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007.  相似文献   

19.
This work focuses on the AFM study of the aggregation morphology and association mechanism of the hydrophobically‐association water‐soluble polymer P (AM‐AA‐BPAM) in aqueous solution. It shows that the P (AM‐AA‐BPAM) molecule chain, which has hydrophobic and hydrophilic ionic groups, forms the “spherical” aggregations as micelles below 0.2 g · dL?1, and then connect each other to form the string‐like aggregations, which produce large viscosity for the polymer solution. It is also coincident with the FCS, DLS, and viscosity study result. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1175–1178, 2004  相似文献   

20.
Aqueous two‐phase copolymerization of acrylamide(AM) and acryloyloxyethyl trimethyl ammonium chloride (DAC) was performed in poly(ethylene glycol) (PEG) solution and in PEG chloride(Cl‐PEG) solution, respectively. Series of cationic polyacrylamide(CPAM) aqueous dispersion were prepared using potassium persulfate (KPS) as initiator. The effect of total amount of monomers, the dosage of initiator, the content of dispersant, the mass ratio of AM to DAC, and the temperature on the conversion, molecular weight, cationic degree, and stability of aqueous dispersion were studied in detail. It is found that the increase of initiator and reaction temperature resulted in the increase of the final conversion, whereas the increase of DAC and PEG concentration resulted in the decrease of the final conversion. The optimum reaction conditions of synthesis were as follows: (1) PEG‐H2O system: PEG 7.5 g, AM 8 g, DAC 2 g, KPS 0.05 g, H2O 100 mL, 70°C. In this process conditions, the molecular weight of CPAM was 3.21 × 106, the cationic degree of CPAM was 24.4%, the storage stability of the aqueous dispersion was over 3 months. (2) Cl‐PEG‐H2O system: Cl‐PEG 7.5 g, AM 8 g, DAC 2 g, KPS 0.05 g, H2O 100 mL, 65°C. In this process conditions, the molecular weight was 3.68 × 106, the cationic degree was 23.3%, and the storage stability of the aqueous dispersion was over 6 months. In general, the stability of CPAM aqueous dispersion in Cl‐PEG system is much better than in PEG system. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号