共查询到20条相似文献,搜索用时 15 毫秒
1.
Decorating Perovskite Quantum Dots in TiO2 Nanotubes Array for Broadband Response Photodetector 下载免费PDF全文
Zhi Zheng Fuwei Zhuge Yaguang Wang Jianbing Zhang Lin Gan Xing Zhou Huiqiao Li Tianyou Zhai 《Advanced functional materials》2017,27(43)
Broadband photodetectors based on TiO2 nanotubes (NTs) array have significant prospects in many fields such as environmental monitoring. Herein, a simple spin‐coating process is successfully adopted to incorporate MAPbI3 quantum dots (QDs) onto the surface of TiO2 NTs to form a heterostructure, extending the response range of TiO2 NT from ultraviolet to visible. Compared with pure TiO2 NTs, the heterostructure demonstrates an improvement of responsivity in visible range by three orders of magnitude, and maintains its response performance in the UV range simultaneously. The TiO2 NTs based heterostructure photodetectors demonstrate a relative fast and stable response in the 300–800 nm range and even have a reponsivity of 0.2 A W?1 at 700 nm. The photoelectric performance of the hybrid photodetector based on TiO2 NTs maintains well when exposed to moist air for 72 h or heated from room temperature to 100 °C. Moreover, such a TiO2 NTs/MAPbI3 QDs heterostructure device demonstrates excellent flexibility and high transparency (85%) in the 400–800 nm range, their photodetecting performance is well retained after 200 cycles of repeated bending at 90°. The present strategy that combines facile electrospinning and solution‐processed QDs may open a new avenue for wide range response and flexible devices construction. 相似文献
2.
Rémi Beaulac Paul I. Archer Stefan T. Ochsenbein Daniel R. Gamelin 《Advanced functional materials》2008,18(24):3873-3891
Recent advances in the chemistry of colloidal semiconductor nanocrystal doping have led to new materials showing fascinating physical properties of potential technological importance. This article provides an overview of efforts to dope one of the most widely studied colloidal semiconductor nanocrystal systems, CdSe quantum dots, with one of the most widely studied transition‐metal dopant ions, Mn2+, and describes the major new physical properties that have emerged following successful synthesis of this material. These properties include spin‐polarizable excitonic photoluminescence, magnetic circular dichroism, exciton storage, and excitonic magnetic polaron formation. A brief survey of parallel advances in the characterization of analogous self‐assembled Mn2+‐doped quantum dots grown by molecular beam epitaxy is also presented, and the physical properties of the colloidal quantum dots are shown to compare favorably with those of the self‐assembled quantum dots. The rich variety of physical properties displayed by colloidal Mn2+‐doped CdSe quantum dots highlights the attractiveness of this material for future fundamental and applied research. 相似文献
3.
4.
5.
Johanna Engel Sean R. Bishop Lionel Vayssieres Harry L. Tuller 《Advanced functional materials》2014,24(31):4952-4958
A novel method for performing in situ characterization of the electrical properties of pristine, ultrafine nanopowders is reported. A modified dilatometer, with a spring‐loaded push rod and electrodes, allows for the simultaneous monitoring of the packed nanopowder's lateral displacement as well as its complex impedance spectroscopy as a function of temperature within a controlled environment. Anatase TiO2 quantum dots of 2 nm diameter, on average, are examined and found to simultaneously shrink and become more resistive upon initial heating. The resistance changes by approximately 3 orders of magnitude upon heating, associated with the desorption of adsorbed water, demonstrating the need for sample preconditioning. Subsequent electrical resistivity measurements, as a function of oxygen partial pressure, over approximately 40 orders of magnitude, at temperatures between 300 °C and 400 °C, exhibit nearly 9 orders of magnitude change in conductivity. The data are consistent with a Frenkel‐based defect disorder model characterized by an enthalpy of reduction of 5.5 ± 0.5 eV. 相似文献
6.
Thelese R. B. Foong Yaodong Shen Xiao Hu Alan Sellinger 《Advanced functional materials》2010,20(9):1390-1396
Dense and well‐aligned arrays of TiO2 nanotubes extending from various substrates are successfully fabricated via a new liquid‐phase atomic layer deposition (LALD) in nanoporous anodic alumina (AAO) templates followed by alumina dissolution. The facile and versatile process circumvents the need for vacuum conditions critical in traditional gas‐phase ALD and yet confers ALD‐like deposition rates of 1.6–2.2 Å cycle?1, rendering smooth conformal nanotube walls that surpass those achievable by sol–gel and Ti‐anodizing techniques. The nanotube dimensions can be tuned, with most robust structures being 150–400 nm tall, 60–70 nm in diameter with 5–20 nm thick walls. The viability of TiO2 nanotube arrays deposited on indium tin oxide (ITO)–glass electrodes for application in model hybrid poly(3‐hexylthiophene) (P3HT):TiO2 solar cells is studied. The results achieved provide platforms and research directions for further advancements. 相似文献
7.
Xiaoming Li Muchen Rui Jizhong Song Zihan Shen Haibo Zeng 《Advanced functional materials》2015,25(31):4929-4947
As new members of carbon material family, carbon and graphene quantum dots (CDs, GQDs) have attracted tremendous attentions for their potentials for biological, optoelectronic, and energy related applications. Among these applications, bio‐imaging has been intensively studied, but optoelectronic and energy devices are rapidly rising. In this Feature Article, recent exciting progresses on CD‐ and GQD‐based optoelectronic and energy devices, such as light emitting diodes (LEDs), solar cells (SCs), photodetctors (PDs), photocatalysis, batteries, and supercapacitors are highlighted. The recent understanding on their microstructure and optical properties are briefly introduced in the first part. Some important progresses on optoelectronic and energy devices are then addressed as the main part of this Feature Article. Finally, a brief outlook is given, pointing out that CDs and GQDs could play more important roles in communication‐ and energy‐functional devices in the near future. 相似文献
8.
9.
Demet Asil Brian J. Walker Bruno Ehrler Alessandro Sepe Sam Bayliss Aditya Sadhanala Philip C. Y. Chow Ullrich Steiner Neil C. Greenham Richard H. Friend 《Advanced functional materials》2015,25(6):928-935
Semiconductor nanocrystals are promising materials for printed optoelectronic devices, but their high surface areas are susceptible to forming defects that hinder charge carrier transport. Furthermore, correlation of chalcogenide nanocrystal (NC) material properties with solar cell operation is not straightforward due to the disorder often induced into NC films during processing. Here, an improvement in long‐range ordering of PbSe NCs symmetry that results from halide surface passivation is described, and the effects on chemical, optical, and photovoltaic device properties are investigated. Notably, this passivation method leads to a nanometer‐scale rearrangement of PbSe NCs during ligand exchange, improving the long‐range ordering of nanocrystal symmetry entirely with inorganic surface chemistry. Solar cells constructed with a variety of architectures show varying improvement and suggest that triplet formation and ionization, rather than carrier transport, is the limiting factor in singlet fission solar cells. Compared to existing protocols, our synthesis leads to PbSe nanocrystals with surface‐bound chloride ions, reduced sub‐bandgap absorption and robust materials and devices that retain performance characteristics many hours longer than their unpassivated counterparts. 相似文献
10.
11.
Krischan F. Jeltsch Martin Schädel Jörg‐Bernd Bonekamp Phenwisa Niyamakom Frank Rauscher Hans W. A. Lademann Ines Dumsch Sybille Allard Ullrich Scherf Klaus Meerholz 《Advanced functional materials》2012,22(2):397-404
The cell performance of organic‐inorganic hybrid photovoltaic devices based on CdSe nanocrystals and the semiconducting polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) is strongly dependent on the applied polymer‐to‐nanocrystal loading ratio and the annealing temperature. It is shown here that higher temperatures for the thermal annealing step have a beneficial impact on the nanocrystal phase by forming extended agglomerates necessary for electron percolation to enhance the short‐circuit current. However, there is a concomitant reduction of the open‐circuit voltage, which arises from energy‐level alterations of the organic and the inorganic component. Based on quantum dots and PCPDTBT, we present an optimized organic–inorganic hybrid system utilizing an annealing temperature of 210 °C, which provides a maximum power conversion efficiency of 2.8%. Further improvement is obtained by blending nanocrystals of two different shapes to compose a favorable n‐type network. The blend of spherical quantum dots and elongated nanorods results in a well‐interconnected pathway for electrons within the p‐type polmer matrix, yielding maximum efficiencies of 3.6% under simulated AM 1.5 illumination. 相似文献
12.
在量子点表面包覆二氧化硅壳层,能够有效的保护纳米粒子核不受外界环境的影响,使得它在光电子器件和生物标记等领域中有着广泛的应用前景。通过一锅法制备高质量CdS:Mn/ZnS量子点,然后利用反相微乳液方法在量子点的表面继续包覆SiO2层,得到CdS:Mn/ZnS@SiO2多层核壳结构量子点材料。化学性质稳定的ZnS及SiO2材料的包覆使CdS量子点材料的毒副作用降低并有效提高其稳定性,然而CdS:Mn/ZnS量子点的大部分性能在包覆SiO2后都保持不变,因此CdS:Mn/ZnS@SiO2量子点在光学应用中有很大的应用潜力。 相似文献
13.
14.
自组织生长方法作为一种有效而直接的制备半导体量子点的方法受到重视。本文采用无需在样品上制备电极的电容耦合的光伏谱方法,实验测量了In0.4Ga0.6As/GaAs自组织量子点在不同的温度下的光伏谱,对测量谱峰进行了指认,研究了量子点谱峰能量位置随温度的依赖关系,实验结果表明,量子点具有与体材料及二维体系不同的温度特性,对实验所测样品,其激子峰能量随温度增加而红移的速率约为GaAs体材料带隙变化的1 相似文献
15.
16.
CdS Quantum Dots Encapsulated in Chiral Nematic Mesoporous Silica: New Iridescent and Luminescent Materials 下载免费PDF全文
Thanh‐Dinh Nguyen Wadood Y. Hamad Mark J. MacLachlan 《Advanced functional materials》2014,24(6):777-783
Simultaneous integration of light emission and iridescence into a semiconducting photonic material is attractive for the design of new optical devices. Here, a straightforward, one‐pot approach for liquid crystal self‐assembly of semiconductor quantum dots into cellulose nanocrystal‐templated silica is developed. Through a careful balance of the intermolecular interactions between a lyotropic tetraalkoxysilane/cellulose nanocrystal dispersion and water‐soluble polyacrylic acid/mercaptopropionic acid‐stabilized CdS quantum dots, CdS/silica/nanocellulose composites that retain both chiral nematic order of the cellulose nanocrystals and emission of the quantum dots are successfully co‐assembled. Subsequent removal of the cellulose template and organic stabilizers in the composites by controlled calcination generates new freestanding iridescent, luminescent chiral nematic mesoporous silica‐encapsulated CdS films. The pores of these materials are accessible to analytes and, consequently, the CdS quantum dots undergo strong luminescence quenching when exposed to TNT solutions or vapor. 相似文献
17.
18.
Yan‐Yan Song Zhi‐Da Gao Jian‐Hua Wang Xing‐Hua Xia Robert Lynch 《Advanced functional materials》2011,21(10):1941-1946
WO3 nanoparticles loaded in TiO2 nanotube arrays, fabricated by a chemical bath deposition (CBD) technique in combination with a pyrolysis process, is uniform and the diameter can be easily adjusted by the deposition times. The resultant hybrid nanotubes array shows a multistage coloring electrochromic response at different potential bias. The formation of a 3‐dimensional WO3/TiO2 junction promotes unidirectional charge transport due to the one‐dimensional features of the tubes, which leads to the significant positive‐shift onset potential of the cathodic reaction (ion insertion) and the highly increased proton storage capacity. Compared to non‐decorated nanotube arrays, the enhanced electrochromic properties of longer lifetime, higher contrast ratio (bleaching time/coloration time), and improved tailored electrochromic behavior could be achieved using the composite films. 相似文献
19.
The promise for next generation light‐emitting device (LED) technologies is a major driver for research on nanocrystal quantum dots (QDs). The low efficiencies of current QD‐LEDs are often attributed to luminescence quenching of charged QDs through Auger‐processes. Although new QD chemistries successfully suppress Auger recombination, high performance QD‐LEDs with these materials have yet to be demonstrated. Here, QD‐LED performance is shown to be significantly limited by the electric field. Experimental field‐dependent photoluminescence decay studies and tight‐binding simulations are used to show that independent of charging, the electric field can strongly quench the luminescence of QD solids by reducing the electron and hole wavefunction overlap, thereby lowering the radiative recombination rate. Quantifying this effect for a series of CdSe/CdS QD solids reveals a strong dependence on the QD band structure, which enables the outline of clear design strategies for QD materials and device architectures to improve QD‐LED performance. 相似文献
20.
Diego Bouzas‐Ramos Jesus Cigales Canga Juan Carlos Mayo Rosa Maria Sainz Jorge Ruiz Encinar Jose Manuel Costa‐Fernandez 《Advanced functional materials》2019,29(38)
Nanoparticles are increasingly being used as advantageous alternatives to commonly used contrast agents in bioimaging, not only due to their improved imaging capabilities but also their great potential in theranostics. Herein, carbon quantum dots (CQDs) codoped with nitrogen and lanthanides (i.e., Gd and Yb) are synthesized using a one‐pot microwave‐assisted hydrothermal method and evaluated as improved multimodal contrast agents for imaging purposes. The obtained doped‐CQDs exhibit an intense fluorescence emission with excellent quantum yields (66 ± 7%) along with outstanding magnetic resonance (MR) and computed tomography (CT) contrast properties, without showing appreciable cytotoxicity after their exposure to three different cell lines for 24 and 72 h. Such outstanding features turn these nanoparticles into ideal labels for multimodal imaging. To actually prove such potential, first, these CQDs codoped with N and lanthanides are successfully applied to in vitro fluorescence, and MR and CT cell imaging. In addition, such nanoparticles demonstrate to have great potential as contrast agents for multimodal imaging in vivo as significant MR and CT contrast enhancement is observed in the bladder and kidneys of a mouse after their intravenous injection into the tail vein. 相似文献