首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trivalent Eu3+-doped CdS quantum dot (CdS: Eu3+ QD)-sensitized TiO2 nanotube arrays (TNTAs) solar cells are prepared by using the direct adsorption method. The influences of sensitization time, sensitization temperature, and Eu3+ ion concentrations are investigated systematically. The photo-current of the CdS: Eu3+ QDs/TiO2 nanotubes appear at the main absorption region of 320–480 nm, and the maximum incident photon to the current conversion efficiency (IPCE) value is 21% at 430 nm when the sensitization condition is 4% doping Eu3+ concentration, 60 °C sensitization temperature, 8 h sensitization time. Compared with the un-doped CdS QD-sensitized TNTAs, the conversion efficiency and IPCE of CdS: Eu3+ QDs/TNTAs are two times and three times than that of un-doped CdS QDs sensitized TNTAs. This scenario exhibits the potential applications of rare earth elements in QD-sensitized solar cells.  相似文献   

2.
In this paper, we report a novel CdS and PbS quantum dots (QDs) co-sensitized TiO2 nanorod arrays photoelectrode for quantum dots sensitized solar cells (QDSSCs). TiO2 film consisting of free-standing single crystal nanorods with several microns high and 90–100 nm in diameter were deposited on a conducting glass (SnO2:FTO) substrate by hydrothermal method. Then CdS/PbS QDs were deposited in turn on TiO2 nanorods by facile SILAR technique. The FTO/TiO2/CdS/PbS, used as photoelectrode in QDSSCs, produced a light to electric power conversion efficiency (Eff) of 2.0% under AM 1.5 illumination (100% sun), which shows the best power conversion efficiency compared with single CdS or PbS sensitized QDSSCs. One dimension TiO2 nanorod provides continuous charge carrier transport pathways without dead ends. The stepwise structure of the band edges favored the electron injection and the hole-recovery for both CdS and PbS layers in photoelectrode, which may gave a high electric power conversion efficiency. The facile preparation and low cost nature of the proposed method and structure make it has a bright application prospects in photovoltaic areas in the future.  相似文献   

3.
Highly efficient, visible‐light‐induced H2 generation can be achieved without the help of a Pt cocatalyst by new hybrid photocatalysts, in which CdS quantum dots (QDs) (particle size ≈2.5 nm) are incorporated in the porous assembly of sub‐nanometer‐thick layered titanate nanosheets. Due to the very‐limited crystal dimension of component semiconductors, the electronic structure of CdS QDs is strongly coupled with that of the layered titanate nanosheets, leading to an efficient electron transfer between them and the enhancement of the CdS photostability. As a consequence of the promoted electron transfer, the photoluminescence of CdS QDs is nearly quenched after hybridization, indicating the almost‐suppression of electron‐hole recombination. These Pt‐cocatalyst‐free, CdS‐layered titanate nanohybrids show much‐higher photocatalytic activity for H2 production than the precursor CdS QDs and layered titanate, which is due to the increased lifetime of the electrons and holes, the decrease of the bandgap energy, and the expansion of the surface area upon hybridization. The observed photocatalytic efficiency of these Pt‐free hybrids (≈1.0 mmol g?1 h?1) is much greater than reported values of other Pt‐free CdS‐TiO2 systems. This finding highlights the validity of 2D semiconductor nanosheets as effective building blocks for exploring efficient visible‐light‐active photocatalysts for H2 production.  相似文献   

4.
The possibility of in situ doping during electrochemical anodization of titania nanotube arrays is demonstrated and the mechanism and variations in structural and electronic characteristics of the nanotube arrays as after doping is systematically explored. In the presence of strontium as the dopant, bulk analysis shows strontium mainly incorporated into the lattice of TiO2. Surface analysis, however, reveals phase segregation of SrO in the TiO2 matrix at high Sr doping levels. The near edge X‐ray absorption fine structure (NEXAFS) spectroscopy analysis reveals that Sr2+ doping only alters the Ti and O ions interaction in the TiO2 lattice on the surface with no effect on their individual charge states. An in‐depth understanding of the dopant incorporation mechanism and distribution into TiO2 nanotube arrays is achieved using high resolution transmission electron microscopy (HRTEM) and the high angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) coupled with the electron energy loss spectroscopy (EELS) measurements on the surface and bulk of the nanotubes. Upon their use to photoelectrochemically split water, the Sr‐doped TiO2 nanotube film shows incident photon conversion efficiencies (IPCE) as high as 65%. The enhanced light activity in conjunction with the ordered one‐dimensional morphology makes the fabricated films promising candidates for water photoelectrolysis.  相似文献   

5.
A simple and versatile technique has been developed to prepare TiO2 and TiO2‐based composite (TiO2–CdS and TiO2–Au) nanotube arrays. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), thermogravimetric analysis (TGA), UV‐vis spectroscopy, and photoluminescence (PL) spectroscopy are used to characterize their morphology, structure, composition, and properties. The TiO2–CdS nanotubes contained many TiO2 and CdS quantum dots and exhibited a novel PL band in the blue‐wavelength range. The reported strategy will be useful for fabricating nanoparticle–nanoparticle composite nanostructure arrays, which are suitable for applications in catalysis, chemical sensors, nanoelectrodes, and nanodevices.  相似文献   

6.
Separation and transfer of photogenerated charge carriers are key elements in designing photocatalysts. TiO2 in numerous geometries has been for many years the most studied photocatalyst. To overcome kinetic limitations and achieve swift charge transfer, TiO2 has been widely investigated with cocatalysts that are commonly randomly placed nanoparticles on a TiO2 surface. The poor control over cocatalyst placement in powder technology approaches can drastically hamper the photocatalytic efficiencies. Here in contrast it is shown that the site‐selective placement of suitable charge‐separation and charge‐transfer cocatalysts on a defined TiO2 nanotube morphology can provide an enhancement of the photocatalytic reactivity. A TiO2–WO3–Au electron‐transfer cascade photocatalyst is designed with nanoscale precision for H2 production on TiO2 nanotube arrays. Key aspects in the construction are the placement of the WO3/Au element at the nanotube top by site‐selective deposition and self‐ordered thermal dewetting of Au. In the ideal configuration, WO3 acts as a buffer layer for TiO2 conduction band electrons, allowing for their efficient transfer to the Au nanoparticles and then to a suitable environment for H2 generation, while TiO2 holes due to intrinsic upward band bending in the nanotube walls and short diffusion length undergo a facilitated transfer to the electrolyte where oxidation of hole‐scavenger molecules takes place. These photocatalytic structures can achieve H2 generation rates significantly higher than any individual cocatalyst–TiO2 combination, including a classic noble metal–TiO2 configuration.  相似文献   

7.
In dye-sensitized solar cells, highly ordered TiO2 nanotube arrays as a photoelectrode have higher charge collection efficiencies than a nanoparticle-based structure due to their faster charge percolation and slower recombination of electrons. Highly ordered TiO2 nanotube arrays were grown by anodic oxidation of 0.5-mm-thick titanium foil. To increase the conversion efficiency of dye-sensitized solar cells with TiO2 nanotube arrays, the surface of the TiO2 nanotube arrays was modified by zinc oxide thin films. The ZnO thin film was formed by atomic layer deposition. The thin film was conformal on the inner and outer walls of TiO2 nanotube arrays. ZnO thin film improved the short circuit current (J sc) and open circuit voltage (V oc) due to increasing specific surface area from particulates of ZnO thin film and increasing the surface charge induced from the isoelectric point. The power conversion efficiency of dye-sensitized solar cells with ZnO thin film on 4.5-μm-thick TiO2 nanotube arrays was 1.43%. Microstructure and phase were observed by scanning electron microscopy, x-ray diffractometry, and transmission electron microscopy.  相似文献   

8.
Cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots (QDs) are sequentially assembled onto a nanocrystalline TiO2 film to prepare a CdS/CdSe co‐sensitized photoelectrode for QD‐sensitized solar cell application. The results show that CdS and CdSe QDs have a complementary effect in the light harvest and the performance of a QDs co‐sensitized solar cell is strongly dependent on the order of CdS and CdSe respected to the TiO2. In the cascade structure of TiO2/CdS/CdSe electrode, the re‐organization of energy levels between CdS and CdSe forms a stepwise structure of band‐edge levels which is advantageous to the electron injection and hole‐recovery of CdS and CdSe QDs. An energy conversion efficiency of 4.22% is achieved using a TiO2/CdS/CdSe/ZnS electrode, under the illumination of one sun (AM1.5,100 mW cm?2). This efficiency is relatively higher than other QD‐sensitized solar cells previously reported in the literature.  相似文献   

9.
Titania-Strontium titanate (TiO2-SrTiO3)nanotube array with heterostructure has been demonstrated as an efficient scaffold applied to quantum dot photoelectrochemical solar cells. Quantum dot CdS serviced as solar light absorbent is chosen as an example to illustrate superior performance and deposited on scaffolds by successive ionic layer adsorption and reaction (SILAR) technique. The photoelectrochemical performance of such solar cell is strongly dependent on the structure of heterostructured scaffolds. Only well-dispersed SrTiO3 nanocrystallites on TiO2 could improve the overall conversion efficiency. Transient absorption spectra and photoelectrochemical measurements show that the formation of SrTiO3 energy gradient between TiO2 and electrolyte slows down the rate of electronic injection from 19.3 × 108 to 6.30 × 108 s 1, while it greatly increases electronic collection efficiency via reduced charge recombination. Cadmium sulfide (CdS) quantum dots used to decorate TiO2-SrTiO3 (1 h hydrothermal treatment) electrode exhibits superior photoelectrochemical performance with nearly 70% increase in external quantum efficiency at 460 nm and also in overall cell conversion efficiency. The photostability and high efficiency properties of TiO2SrTiO3 composites would enable its practical application in solar energy conversion devices.  相似文献   

10.
The photoelectrocatalytic urea oxidation reaction (PEC-UOR) holds a great promise for the wastewater remediation and energy production. However, the low efficiency of semiconductor/cocatalysts type photoanodes for UOR restricts their applications in photoelectrocatalytic system. Herein, a new semiconductor/cocatalyst, Ni2P clusters sensitized TiO2 nanotube arrays photoanode (Ni2P/TiO2-NTAs) for PEC-UOR with high efficiency are developed. The 1D TiO2-NTAs structure accelerates urea molecules diffusion and promotes CO2 gas release at the electrode interface. Meanwhile, Ni2P is also beneficial to urea molecule absorption and CO2 desorption and enable to lower the energy barrier for amine (N H) dehydrogenation. Furthermore, the robust interfacial charge transfer pathway between Ni2P and TiO2 interface promotes the separation of photogenerated electrons and holes and the transfer of photogenerated electrons from Ni2P to TiO2. Therefore, this photoanode shows excellent PEC-UOR performance with the potential of 1.43 V versus reversible hydrogen electrode (RHE) when the current density reaches 10 mA cm−2, which is much lower than that of 2.24 V versus RHE and 1.58 V versus RHE for TiO2-NTAs and Ni(OH)2/TiO2-NTAs, respectively.  相似文献   

11.
Surface hybridization of TiO2 with graphite‐like carbon layers of a few molecular layers thickness yields efficient photocatalysts. Photoelectrochemical measurements confirm an electronic interaction between TiO2 and the graphite‐like carbon. A TiO2 photocatalyst with a carbon shell of three molecular layers thickness (~1 nm) shows the highest photocatalytic activity which is about two times higher than that of Degussa P25 TiO2 under UV light irradiation. The mechanism of the enhanced photocatalytic activity under UV irradiation is based on the high migration efficiency of photoinduced electrons at the graphite‐like carbon/TiO2 interface, which is due to the electronic interaction between both materials. In addition, a high activity under visible light irradiation is observed after graphite‐like carbon hybridization. TiO2's response is extended into the visible range of the solar spectrum due to the electronic coupling of π states of the graphite‐like carbon and conduction band states of TiO2.  相似文献   

12.
The pulsed laser deposition (PLD) technique is used for the direct fabrication of nanohybrid heterojunctions (NH‐HJs) solar cells exhibiting high PCE and excellent stability in air without any encapsulation and/or resorting to any surface treatment, ligand engineering and/or post‐synthesis processing. The NH‐HJs are achieved through the PLD‐based decoration of hydrothermally‐grown one‐dimensional TiO2 nanorods (TiO2‐NRs) by PbS quantum dots (PbS‐QDs). By optimizing both the amount of PbS‐QDs (via the number of laser ablation pulses) and the length of the TiO2‐NRs, it is possible to achieve optimal NH‐HJs based PV devices with high power conversion efficiency (PCE) of 4.85%. This high PCE is found to occur for an optimal length of the NRs (≈290 nm) which coincides with the average penetration depth of PbS‐QDs into the porous TiO2‐NRs matrix, leading thereby to the formation of the largest extent of NH‐HJs. Most importantly, the PCE of these novel devices is found to be fairly stable for several months under ambient air. The addition of single‐wall carbon nanotubes (SWCNTs) onto the TiO2‐NRs prior to their decoration by PbS‐QDs is shown to further enhance their PCE to a value as high as 5.3%, because of additional light absorption and improved charge collection ensured by SWCNTs.  相似文献   

13.
A novel scaffold layer composed of TiO2-ZrO2 composite was fabricated for perovskite solar cell. Compared with pure TiO2 nanoparticles (NPs), the relatively larger ZrO2 NPs could increase film roughness and enhance light-scattering effect in TiO2-ZrO2 composite films. The device exhibited outstanding power conversion efficiency (PCE) of 11.41%. The morphology and aggregation of particles, three-dimensional roughness, as well as the ingredient and micro-structure of FTO/compact TiO2/TiO2-ZrO2 was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), respectively. Moreover, the optical property of TiO2-ZrO2 films for visible light was characterized by UV–visible absorption spectroscopy (UV–vis), and its influence on quantum yield of the device was further demonstrated by incident photon-to-electron conversion efficiency (IPCE). Owing to the inert oxide, the short-circuit current density of perovskite solar cell using TiO2-ZrO2 composition as scaffold layer increased by 21% compared to the one employing pure TiO2 mesoporous film.  相似文献   

14.
In a photoelectrochemical cell, the most concerned issue in the nanostructured TiO2 electrode is the charge transport, which consists of the internal movement of electrons in TiO2 nanostructures and the intergrain charge transfer. Here, inspired by electrochemical studies on different polymorphs of TiO2, it is proposed to bridge the adjacent building blocks and fence the electron transport highways in TiO2 electrodes by surface rutilization of anatase nanorods. The ultrathin rutilized layer completely coated on the anatase surface has a slightly higher conduction band edge than that of anatase. The obtained surface rutilized anatase nanorods can not only improve the intergrain charge transfer while maintaining fast electron transport within anatase but also minimize the internal energy consumption and protect the electrons in TiO2 electrodes from recombination, which are beneficial to the charge collection and can significantly improve the photovoltaic performance of photoelectrochemical cells.  相似文献   

15.
A new procedure for the cosensitization with quantum dots (QDs) and dyes for sensitized solar cells is reported here. Cascade cosensitization of TiO2 electrodes is obtained by the sensitization with CdS QDs and zinc phthalocyanines (ZnPcs), in which ZnPcs containing a sulfur atom are specially designed to produce a cascade injection by direct attachment to QDs. This strategy causes a double synergetic interaction. This is the differentiating point of cascade cosensitization in comparison with other approaches in which dyes with conventional functionalization are anchored to TiO2 electrodes. Cosensitization produces a panchromatic response from the visible to near‐IR region already observed with other sensitization strategies. However, cascade cosensitization produces in addition a synergistic interaction between QDs and dye, that it is not merely limited to the complementary light absorption, but dye enhances the efficiency of QD sensitization acting as a passivating agent. The cascade cosensitization concept is demonstrated with using [Co(phen)3]3+/2+ redox electrolyte. The TiO2/CdS QD‐ZnPc/[Co(phen)3]3+/2+ sensitized solar cell shows a large improvement of short‐circuit photocurrent and open‐circuit voltage in comparison with samples just sensitized with QDs. The advent of such cosensitized QD‐ZnPc solar cells paves the way to extend the absorbance region of the promising QD‐based solar cells and the development of a new family of molecules designed for this purpose.  相似文献   

16.
A high‐energy conversion efficiency of 8.2% at 100 mW cm?2 is reported, one of the highest values for N719‐based, solid‐state, dye‐sensitized solar cells (ssDSSCs). The solar cells are based on hierarchical double‐shell nanostructures consisting of inner SnO2 hollow spheres (SHS) surrounded by outer TiO2 nanosheets (TNSs). Deposition of the TNS on the SHS outer surface is performed via solvothermal reactions in order to generate a double‐shell SHS@TNS nanostructure that provides a large surface area and suppresses recombination of photogenerated electrons. An organized mesoporous (OM)‐TiO2 film with high porosity, large pores, and good interconnectivity is also prepared via a sol‐gel process using a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer template. This film is utilized as a matrix to disperse the double‐shell nanostructures. Such nanostructures provide good pore‐filling for solid polymer electrolytes, faster electron transfer, and enhanced light scattering, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and intensity‐modulated photocurrent spectroscopy (IMPS)/intensity‐modulated photovoltage spectroscopy (IMVS).  相似文献   

17.
Broadband photodetectors based on TiO2 nanotubes (NTs) array have significant prospects in many fields such as environmental monitoring. Herein, a simple spin‐coating process is successfully adopted to incorporate MAPbI3 quantum dots (QDs) onto the surface of TiO2 NTs to form a heterostructure, extending the response range of TiO2 NT from ultraviolet to visible. Compared with pure TiO2 NTs, the heterostructure demonstrates an improvement of responsivity in visible range by three orders of magnitude, and maintains its response performance in the UV range simultaneously. The TiO2 NTs based heterostructure photodetectors demonstrate a relative fast and stable response in the 300–800 nm range and even have a reponsivity of 0.2 A W?1 at 700 nm. The photoelectric performance of the hybrid photodetector based on TiO2 NTs maintains well when exposed to moist air for 72 h or heated from room temperature to 100 °C. Moreover, such a TiO2 NTs/MAPbI3 QDs heterostructure device demonstrates excellent flexibility and high transparency (85%) in the 400–800 nm range, their photodetecting performance is well retained after 200 cycles of repeated bending at 90°. The present strategy that combines facile electrospinning and solution‐processed QDs may open a new avenue for wide range response and flexible devices construction.  相似文献   

18.
WO3 nanoparticles loaded in TiO2 nanotube arrays, fabricated by a chemical bath deposition (CBD) technique in combination with a pyrolysis process, is uniform and the diameter can be easily adjusted by the deposition times. The resultant hybrid nanotubes array shows a multistage coloring electrochromic response at different potential bias. The formation of a 3‐dimensional WO3/TiO2 junction promotes unidirectional charge transport due to the one‐dimensional features of the tubes, which leads to the significant positive‐shift onset potential of the cathodic reaction (ion insertion) and the highly increased proton storage capacity. Compared to non‐decorated nanotube arrays, the enhanced electrochromic properties of longer lifetime, higher contrast ratio (bleaching time/coloration time), and improved tailored electrochromic behavior could be achieved using the composite films.  相似文献   

19.
BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector (PD) with high performance is fabricated by a facile anodization process and an impregnation method. The heterojunction at the interface and the internal electric fields in the BiOCl nanosheets faciliate the separation of photogenerated charge carriers and regulate the transportation of the electrons. Compared with the large dark current (≈10?5 A), low on/off ratio (8.5), and slow decay time (>60 s) of the TiO2 PD, the optimized heterojunction PD (6‐BiOCl–TiO2) yields dramatically decreased dark current (≈1 nA), ultrahigh on/off ratio (up to 2.2 × 105), and fast decay speed (0.81 s) under 350 nm light illumination at ?5 V. Moreover, it exhibits an increased responsivity of 41.94 A W?1, a remarkable detectivity (D*) of 1.41 × 1014 Jones, and a high linear dynamic range of 103.59 dB. The loading amount and growth orientations of the BiOCl nanosheets alter the roles of the self‐induced internal electric field in regulating the behaviors of the charge carriers, thus affecting the photoelectric properties of the heterojunction PDs. These results demonstrate that rational construction of novel heterojunctions hold great potentials for fabricating photodetectors with high performance.  相似文献   

20.
The cobalt phosphate water oxidation catalyst (Co–Pi WOC) stabilized, CdS sensitized TiO2 nanowire arrays for nonsacrificial solar water splitting are reported. In this TiO2/CdS/Co–Pi photoanode, the Co–Pi WOC acts as hole transfer relay to accelerate the surface water oxidation reaction, CdS serves as light absorber for wider solar spectra harvesting, and TiO2 matrix provides direct pathway for electron transport. This triple TiO2/CdS/Co–Pi hybrid photoanode exhibits much enhanced photocurrent density and negatively shifts in onset potential, resulting in 1.5 and 3.4 times improved photoconversion efficiency compared to the TiO2/CdS and TiO2 photoanode, respectively. More importantly, the TiO2/CdS/Co–Pi shows significantly improved photoelectrochemical stability compared to the TiO2/CdS electrode, with ≈72% of the initial photocurrent retained after 2 h irradiation. The reason for the promoted performance is discussed in detail based on electrochemical measurements. This work provides a new paradigm for designing 1D nanoframework/light absorber/WOC photoanode to simultaneously enhance light absorption, charge separation, and transport and surface water oxidation reaction for efficient and stable solar fuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号