首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel aromatic tetraamines containing bulky lateral phenyl unit and multiple trifluoromethyl groups, 1,1‐bis[4‐(3′,4′‐diaminophenoxy)phenyl]‐1‐(3″‐trifluoromethylphenyl)?2,2,2‐trifluoroethane (6FTA) and 1,1‐bis[4‐(3′,4′‐diaminophenoxy)phenyl]‐1‐[3″,5″‐bis(trifluoromethyl)phenyl]‐2,2,2‐trifluoroethane (9FTA) were synthesized and characterized. A series of fluorinated aromatic polybenzimidazopyrrolones (polypyrrolones, PPys) were synthesized via a two‐step polycondensation procedure. The inherent viscosities of the precursors, poly(amide amino acid) (PAAA), ranged from 0.39 dL/g to 0.54 dL/g. All the FPPys were amorphous. The freestanding FPPy films could be prepared, which exhibited good thermal stability with the glass transition temperature of 315–389°C, the temperatures of 5% weight loss (T5%) of 497–535°C in nitrogen and residual weight retention at 700°C over 60%. All the FPPy films exhibited excellent alkaline‐hydrolysis resistance which retained their original shapes and toughness after boiling 7 days in 10% sodium hydroxide solution. Also after boiling 8 h in 10% sodium hydroxide solution, the tensile strength could retain as high as 56% of the original values. The alkaline‐hydrolysis resistance was much better than the polyimides which had similar chemical structures. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40041.  相似文献   

2.
A novel dianhydride, trans‐1,2‐bis(3,4‐dicarboxyphenoxy)cyclohexane dianhydride (1,2‐CHDPA), was prepared through aromatic nucleophilic substitution reaction of 4‐nitrophthalonitrile with trans‐cyclohexane‐1,2‐diol followed by hydrolysis and dehydration. A series of polyimides (PIs) were synthesized from one‐step polycondensation of 1,2‐CHDPA with several aromatic diamines, such as 2,2′‐bis(trifluoromethyl)biphenyl‐4,4′‐diamine (TFDB), bis(4‐amino‐2‐trifluoromethylphenyl)ether (TFODA), 4,4′‐diaminodiphenyl ether (ODA), 1,4‐bis(4‐aminophenoxy)benzene (TPEQ), 4,4′‐(1,3‐phenylenedioxy)dianiline (TPER), 2,2′‐bis[4‐(3‐aminodiphenoxy)phenyl]sulfone (m‐BAPS), and 2,2′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]sulfone (6F‐BAPS). The glass transition temperatures (Tgs) of the polymers were higher than 198°C, and the 5% weight loss temperatures (Td5%s) were in the range of 424–445°C in nitrogen and 415–430°C in air, respectively. All the PIs were endowed with high solubility in common organic solvents and could be cast into tough and flexible films, which exhibited good mechanical properties with tensile strengths of 76–105 MPa, elongations at break of 4.7–7.6%, and tensile moduli of 1.9–2.6 GPa. In particular, the PI films showed excellent optical transparency in the visible region with the cut‐off wavelengths of 369–375 nm owing to the introduction of trans‐1,2‐cyclohexane moiety into the main chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42317.  相似文献   

3.
Aromatic polyetherimides were synthesized from a fluorine containing aromatic carboxylic acid dianhydride, 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride (6F‐BABPA) and five typical aromatic diamines including 1,1‐bis(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3F‐DAM) by two‐step procedures—amidation to polyamic acids (PAA), followed by thermal imidization of PAA. The chemical and physical properties of the newly prepared polyetherimides (PEI) were compared in terms of their chemical structures, inherent viscosities, mechanical, and thermal properties. All polyetherimides were well soluble in common organic solvents such as N‐methyl‐2‐pyrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), pyridine, and methylene chloride. A PEI prepared from 6F‐BABPA/3F‐DAM was especially easily dissolved in NMP. The glass transition temperature (Tg) range of the obtained PEI was 209–257°C. The dielectric constants and refractive index were 2.8–3.2 and 1.61–1.56, respectively. The polyetherimide, 6F‐BABPA/BAPP, with a low fluorine content (11.4% fluorine content), has 0.99% water absorption, whereas the polyetherimide, 6F‐BABPA/4‐BDAP, having a high fluorine content (26.0% fluorine content) showed 0.35% of water absorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 249–257, 2000  相似文献   

4.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

5.
A series of copolyimide/SiO2 hollow sphere thin films were prepared successfully based on bis[3,5‐dimethyl‐4‐(4‐aminophenoxy)phenyl]methane and 9,9‐bis(4‐(4‐aminophenoxy)phenyl)fluorene (molar ratio = 3 : 1) as diamine, and 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) as dianhydride, with different wt % SiO2 hollow sphere powder with particle size 500 nm. Some films possessed excellent dielectric properties, with ultralow dielectric constants of 1.8 at 1 MHz. The structures and properties of the thin films were measured with Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and dynamic mechanical thermal analysis. The polyimide (PI) films exhibited glass‐transition temperatures in the range of 209– 273°C and possessed initial thermal decomposition temperature reaching up to 413–477°C in air and 418–472°C in nitrogen. Meanwhile, the composite films were also exhibited good mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Three diimide‐diacids, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane ( I‐A ), 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]propane ( I‐B ), and 5,5′‐bis[4‐ (4‐trimellitimidophenoxy)phenyl]hexahydro‐4,7‐methanoindan ( I‐C ), were prepared by the azeotropic condensation of trimellitic anhydride with three analogous diamines. Three series of alternating aromatic poly(arylate‐imide)s, having inherent viscosities of 0.41–0.82 dL/g, were synthesized from these diimide‐diacids ( I‐A , I‐B , and I‐C ) with various bisphenols by direct polycondensation using diphenyl chlorophosphate and pyridine as condensing agents. All of the polymers were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and even in the less polar tetrahydrofuran. These polymers could be cast into transparent and tough films, which had strength at break values ranging from 73 to 98 MPa, elongation at break from 6 to 11%, and initial modulus from 1.6 to 2.2 GPa. The softening temperatures of the polymers were recorded at 145–248°C. They had 10% weight loss at a temperature above 450°C and left 35–51% residue even at 800°C in nitrogen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3818–3825, 2003  相似文献   

7.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

8.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
A new kind of pyridine‐containing aromatic diamine monomer, 4‐phenyl‐2,6‐bis[4‐(4‐aminophenoxy)phenyl]‐pyridine (PAPP), was successfully synthesized by a modified chichibabin reaction of benzaldehyde and a substituted acetophenone, 4‐(4‐nitrophenoxy)‐acetophenone (NPAP), followed by a reduction of the resulting dinitro compound 4‐phenyl‐2,6‐bis[4‐(4‐nitrophenoxy)phenyl]‐pyridine (PNPP) with Pd/C and hydrazine monohydrate. The aromatic diamine was employed to synthesize a series of new pyridine‐containing polyimides by polycondensation with various aromatic dianhydrides in N‐methy‐2‐pyrrolidone (NMP) via the conventional two‐step method, i.e., ring‐opening polycondensation forming the poly (amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.79–1.13 dL/g, and most of them were soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), NMP, and tetrahydrofuran (THF), etc. Meanwhile, strong and flexible polyimide films were obtained, which had good thermal stability, with the glass transition temperatures (Tg) of 268–338°C and the temperature at 5% weight loss of 521–548°C in air atmosphere, as well as outstanding mechanical properties with tensile strengths of 89.2–112.1 MPa and elongations at break of 9.5–15.4%. The polyimides also were found to possess low dielectric constants ranging from 2.53 to 3.11. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 212–219, 2007  相似文献   

10.
New aromatic polyetherimides containing the 1,1′-bis[4-(3,4-dicarboxyphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane dianhydride unit were prepared by a conventional two-step method from 1,1′-bis[4-(3,4-dicarboxyphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane dianhydride and several diamines. This procedure yielded high molecular weight polyetherimides with inherent viscosities of 0.22–1.29 dL/g. Most of the corresponding polyetherimides were soluble in organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N,N-dimethylacetamide, and methylene chloride under ambient temperature. The glass transition temperatures (Tg) of these polymers were in the range of 207–264°C and the temperatures of 10% weight loss were over 520°C at a heating rate 20°C/min in nitrogen. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Polyimide‐g‐nylon 6 copolymers were prepared by the polymerization of phenyl 3,5‐diaminobenzoate with several diamines and dianhydrides with a one‐step method. The polyimides containing pendant ester moieties were then used as activators for the anionic polymerization of molten ε‐caprolactam. Nylon 6‐b‐polyimide‐b‐nylon 6 copolymers were prepared by the use of phenyl 4‐aminobenzoate as an end‐capping agent in the preparation of a series of imide oligomers. The oligomers were then used to activate the anionic polymerization of ε‐caprolactam. In both the graft and copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120°C to generate N‐acyllactam moieties, which activated the anionic polymerization. All the block copolymers had higher moduli and tensile strengths than those of nylon 6. However, their elongations at break were much lower. The graft copolymers based on 2,2′‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride and 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane displayed elongations comparable to that of nylon 6 and the highest moduli and tensile strengths of all the copolymers. The thermal stability, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide into both the graft and block copolymers. The graft and block copolymers also exhibited improved melt processability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 300–308, 2006  相似文献   

12.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

13.
Polyamides (PAs) containing fluorene, oxyether, and diphenyl‐silane moieties in the repeating unit were synthesized in > 85% yield by direct polycondesation between a diamine and four dicarboxylic acids. Alternatively, one PA was synthesized from an acid dichloride. The diamine 4‐[4‐[9‐[4‐(4‐aminophenoxy)‐3‐methyl‐phenyl]fluoren‐9‐yl]‐2‐methyl‐phenoxy]aniline ( 3 ) was obtained from the corresponding dinitro compound, which was synthesized by nucleophilic aromatic halogen displacement from p‐chloronitrobenzene and 9,9‐bis (4‐hydroxy‐3‐methyl‐phenyl)fluorene ( 1 ). Monomers and polymers were characterized by FTIR and 1H, 13C, and 29Si‐NMR spectroscopy and the results were in agreement with the proposed structures. PAs showed inherent viscosity values between 0.14 and 0.43 dL/g, indicative of low molecular weight species, probably of oligomeric nature. The glass transition temperature (Tg) values were observed in the 188–211°C range by DSC analysis. Thermal decomposition temperature (TDT10%) values were above 400°C due to the presence of the aromatic rings in the diamine. All PAs showed good transparency in the visible region (>88% at 400 nm) due to the incorporation of the fluorene moiety. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Three isomeric tetraaryl cyanate esters containing biphenyl moieties {bis‐[4‐(4′‐cyanatophenyl)phenyl]propane, 2,2‐bis‐[4‐(3′‐cyanatophenyl)phenyl]propane, and 2,2‐bis‐[4‐(2′‐cyanatophenyl)phenyl]propane} and three isomeric triaryl cyanate esters {2‐(4′‐hydroxyphenyl)‐2‐[4′‐(4‐hydroxyphenyl)phenyl]propane, 2‐(4′‐hydroxyphenyl)‐2‐[4′‐(3‐hydroxyphenyl)phenyl]propane, and 2‐(4′‐hydroxyphenyl)‐2‐[4′‐(2‐hydroxyphenyl)phenyl]propane} were synthesized from their corresponding bisphenols. The structures of the monomers were confirmed with IR and 1H‐NMR spectroscopy. The curing behavior was investigated with differential scanning calorimetry. Cyanate esters were cured thermally in the absence of a catalyst and were characterized by dynamic mechanical analysis. The results were compared to the properties of commercial bisphenol A polycyanurate. Of the three tetraaryl isomers, 2,2‐bis‐[4‐(2′‐cyanatophenyl)phenyl]propane had the highest melting point, and its corresponding resin had the lowest glass‐transition temperature (Tg). The para isomer displayed the highest Tg value of the three novel tetraaryl resins. The triaryl dicyanate isomers were low‐melting solids, with the ortho and meta isomers existing as liquids at room temperature. The Tg value of the para‐triaryl isomer was the highest of the three triaryl isomers and was about the same as that of bisphenol A polycyanurate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Two novel bismaleimide (BMI) monomers containing silicon atom in the structure, i.e., bis[4-(4-maleimidophenylcarbonyloxy)phenyl]dimethylsilane (BMI-SiE1) and bis[4-(4-maleimidophenyloxycarbonyl)phenyl]dimethylsilane (BMI-SiE2), were designed, synthesized, and polymerized with and without the use of diamine as comonomers to yield novel silicon-containing BMI resins. Both monomers obtained are readily soluble in organic solvents, such as chloroform and N, N-dimethylformamide. Differential scanning calorimetry and thermogravimetric analysis investigation of these two monomers indicated a high polymerization temperature (Tp > 240°C) and a good thermal and thermo-oxidative stability of cured BMI resins. The onset temperature for 5% weight loss was found to be above 450°C in nitrogen and above 400°C in the air. Polymerization of BMI-SiE1 and BMI-SiE2 with 4,4′-diaminodiphenylether (DPE) yielded a series of polyaspartimides that had good solubility and could be thermally cured at 250°C. TGA investigations of the cured diamine-modified BMI resins showed onset of degradation temperatures (Tds) in the range of 344–360°C in nitrogen and 332–360°C in the air. Composites based on the cured diamine-modified BMI resins and glass cloth were prepared and characterized for their dynamic mechanical properties. All the composites showed high glass transition temperatures (e.g., >190°C) and high bending modulus in the range of 1000–2700 MPa. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
A novel siloxane‐imide‐containing polybenzoxazine based on N,N′‐bis(N‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazine)‐5, 5′‐bis(1,1′,3,3′‐tetramethyldisiloxane‐1,3‐diyl)‐bis(norborane‐2,3‐dicarboximide) (BZ‐A1) was successfully synthesized. The thermal properties of BZ‐A1 are superior to those of conventional polybenzoxazines lacking siloxane groups. Polymerized BZ‐A1 possesses extremely low surface free energy (γs = 15.1 mJ m?2) after curing at 230 °C for 1 h. Moreover, the surface free energy of polymerized BZ‐A1 is more stable than conventional bisphenol A‐type polybenzoxazine during thermal curing and annealing processes, indicating that polymerized BZ‐A1 is more suitable for applications requiring low surface free energy materials for high temperatures over long periods of time. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Novel polyimides were synthesized from 1‐[3′,5′‐bis(trifluoromethyl)phenyl] pyromellitic dianhydride (6FPPMDA) by a conventional two‐step process: the preparation of poly(amic acid) followed by solution imidization via refluxing in p‐chlorophenol. The diamines used for polyimide synthesis included bis(3‐aminophenyl)‐3,5‐bis(trifluoromethyl)phenyl phosphine oxide, bis(3‐aminophenyl)‐4‐trifluoromethylphenyl phosphine oxide, and bis(3‐aminophenyl)phenyl phosphine oxide. The synthesized polyimides were designed to have a molecular weight of 20,000 g/mol by off‐stoichiometry and were characterized by Fourier transform infrared, NMR, differential scanning calorimetry, and thermogravimetric analysis. In addition, their intrinsic viscosity, solubility, water absorption, and coefficient of thermal expansion (CTE) were also measured. The adhesion properties of the polyimides were evaluated via a T‐peel test with bare and silane/Cr‐coated Cu foils, and the failure surfaces were investigated with scanning electron microscopy. The 6FPPMDA‐based polyimides exhibited high glass‐transition temperatures (280–299°C), good thermal stability (>530°C in air), low water absorption (1.46–2.16 wt %), and fairly low CTEs (32–40 ppm/°C), in addition to good adhesion properties (83–88 g/mm) with silane/Cr‐coated Cu foils. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1801–1809, 2005  相似文献   

18.
A novel aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,4,5‐trifluorophenyl)‐2,2,2‐trifluoroethane, containing a pendant polyfluorinated phenyl group, a trifluoromethyl group, and methyl groups ortho‐substituted to the amino groups in the structure was synthesized and characterized. The diamine was polymerized with several aromatic dianhydrides, including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature one‐step procedure to afford four polyimides (PIs) with inherent viscosities of 0.47–0.70 dL/g. The PIs exhibited excellent solubilities in a variety of organic solvents. They were soluble not only in polar aprotic solvents but in many common solvents, such as cyclopentanone, tetrahydrofuran, and even toluene at room temperature. The tough and flexible PI films cast from the PI solutions exhibited good thermal stabilities and acceptable tensile properties. The glass‐transition temperatures were in the range 312–365°C, and the 5% weight loss temperatures were all higher than 480°C in nitrogen. The films had tensile strengths in the range 76–99 MPa, tensile moduli of 2.2–2.8 GPa, and elongations at break of 5–8%. In addition, the PI films exhibited excellent transparency in the visible light region with cutoff wavelength as low as 302 nm and transmittance higher than 88% at the wavelength of 450 nm. The PI films showed low dielectric constants ranging from 2.50–2.68 and low moisture absorptions of less than 0.56%. The good combined properties of the PIs mainly resulted from the synergic effects of the different substituents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

20.
Three novel aromatic phosphorylated diamines, i.e., bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl} pyromellitamic acid (AP), 4,4′‐oxo bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AB) and 4,4′‐hexafluoroisopropylidene‐bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AF) were synthesized and characterized. These amines were prepared by solution condensation reaction of bis(3‐aminophenyl)methyl phosphine oxide (BAP) with 1,2,4,5‐benzenetetracarboxylic acid anhydride (P)/3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride (B)/4,4′‐(hexafluoroisopropylidene)diphthalic acid anhydride (F), respectively. The structural characterization of amines was done by elemental analysis, DSC, TGA, 1H‐NMR, 13C‐NMR and FTIR. Amine equivalent weight was determined by the acetylation method. Curing of DGEBA in the presence of phosphorylated amines was studied by DSC and curing exotherm was in the temperature range of 195–267°C, whereas with conventional amine 4,4′‐diamino diphenyl sulphone (D) a broad exotherm in temperature range of 180–310°C was observed. Curing of DGEBA with a mixture of phosphorylated amines and D, resulted in a decrease in characteristic curing temperatures. The effect of phosphorus content on the char residue and thermal stability of epoxy resin cured isothermally in the presence of these amines was evaluated in nitrogen atmosphere. Char residue increased significantly with an increase in the phosphorus content of epoxy network. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2235–2242, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号