首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biodegradable polymeric composites were fabricated from poly(butylene succinate) (PBS) and kenaf fiber (KF) by melt mixing technique. The mechanical and dynamic mechanical properties, morphology and crystallization behavior were investigated for PBS/KF composites with different KF contents (0, 10, 20, and 30 wt %). The tensile modulus, storage modulus and the crystallization rate of PBS in the composites were all efficiently enhanced. With the incorporation of 30% KF, the tensile modulus and storage modulus (at 40°C) of the PBS/KF composite were increased by 53 and 154%, respectively, the crystallization temperature in cooling process at 10°C/min from the melt was increased from 76.3 to 87.7°C, and the half‐time of PBS/KF composite in isothermal crystallization at 96 and 100°C were reduced to 10.8% and 14.3% of that of the neat PBS, respectively. SEM analysis indicates that the adhesion between PBS and KF needs further improvement. These results signify that KF is efficient in improving the tensile modulus, storage modulus and the crystallization rate of PBS. Hence, this study provides a good option for preparing economical biodegradable composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
This article reports the mechanical and thermal properties of poly(butylene succinate) (PBS) biocomposites reinforced with industrially available waste silk fibers, fabricated with varying fiber contents and lengths. The result indicates that use of waste silk fibers may be a potential as reinforcement for effectively improving the static and dynamic mechanical properties of a biodegradable polymer matrix resin, depending on the waste silk fiber content and length in the present biocomposite system. The “as‐separated” waste silk/PBS biocomposites showed the maximum tensile and flexural properties at a fiber loading of 40 wt %, and the “chopped” waste silk/PBS biocomposites showed the optimal strength and modulus with waste silk fibers of 12.7 mm length. The chopped waste silk fibers play a more contributing role in improving the mechanical properties of waste silk/PBS biocomposites than the as‐separated waste silk fibers at a fixed fiber loading. Above the glass transition temperature, the storage modulus of waste silk/PBS biocomposites was significantly greater than that of PBS resin, especially in the higher temperature region. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4972–4980, 2006  相似文献   

4.
Huge hydrogenated phenanthrene ring segments were introduced into the main chain of poly(butylene succinate) by polymerization of succinic acid (SA), 1,4‐butanediol (BD) and rosin maleopimaric acid anhydride (RMA), which was obtained from maleic rosin. The chemical structure and composition of the copolyesters were determined with the aid of 1H‐NMR, FTIR and elemental analysis. The thermal properties, crystallization behaviour and mechanical properties of the copolyester were then investigated using differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical testing. With increasing content of hydrogenated phenanthrene ring segments, the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased gradually, but the elongation at break and the notched impact strength of poly(butylene succinate) were enhanced without a significant deterioration of tensile strength. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
N-hexenyl side branches were introduced into poly(butylene succinate) (PBS) by polymerization of succinic acid (SA) with 1,4-butanediol (BD) in the presence of 7-octene-1,2-diol (OD). Thermal properties and biodegradability of the aliphatic polyesters were investigated before and after epoxidation of the pendant double bonds. The glass-transition temperature (Tg) decreased with the branching density to give a minimum at 0.03 mol of branching units per mole of structural units. Thereafter, Tg increased due to the in situ crosslinking of the unsaturated groups during the differential scanning calorimetry (DSC) measurements. N-Hexenyl side branches decreased melting temperature (Tm) more significantly than ethyl side branches, but the effect was on par with that by n-octyl branches. Epoxidation of the double bonds decreased Tm and melting enthalpy (ΔHm), but increased Tg of the aliphatic polyester. Biodegradability was enhanced to some extent by the presence of n-hexenyl side branches. However, the epoxidation of the unsaturated groups did not notably affect the biodegradability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2219–2226, 2001  相似文献   

6.
A composite was synthesized by irradiation of poly(butylene succinate) (PBS) and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS) in the composite. The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy compared to other concentrations. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and irradiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced from the microorganism population in soil. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2122–2127, 2004  相似文献   

7.
Polymeric foams have many advantages such as light weight, high specific strength, strong energy absorption, as well as good sound and thermal insulation. Unfortunately, most polymeric foams such as polyvinyl chloride foams do not undergo natural degradation and thus giving rise to white pollution to the environment. Here, we report the preparation and properties of poly (butylene succinate) (PBS) foam which is a biodegradable plastic. Ammonium bicarbonate is used as the foaming agent during the formation of the PBS foam by the molding method, and under the optimal conditions of 5 wt % ammonium bicarbonate, 10 MPa pressure, and 5 min pressing time, the pristine PBS foam with the smallest bulk density can be obtained, whereas under the conditions of 5 wt % ammonium bicarbonate, 7.5 MPa pressure, and 7 min pressing time, the toughening PBS foam has the smallest bulk density. Adding talc as a nucleating agent can reduce the bulk density of the foam and in this case, an NH4HCO3 content of 3 wt % yields the best result. Moreover, addition of plasticizers can effectively improve the mechanical properties of the products. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
BACKGROUND: To obtain a biodegradable thermoplastic elastomer, a series of poly(ester‐ether)s based on poly(butylene succinate) (PBS) and poly(propylene glycol) (PPG), with various mass fractions and molecular weights of PPG, were synthesized through melt polycondensation. RESULTS: The copolyesters were characterized using 1H NMR, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, mechanical testing and enzymatic degradation. The results indicated that poly(ester‐ether)s with high molecular weights were successfully synthesized. The composition of the copolyesters agreed very well with the feed ratio. With increasing content of the soft PPG segment, the glass transition temperature decreased gradually while the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased. Mechanical testing demonstrated that the toughness of PBS was improved significantly. The elongation at break of the copolyesters was 2–5 times that of the original PBS. Most of the poly(ester‐ether) specimens were so flexible that they were not broken in Izod impact experiments. At the same time, the enzymatic degradation rate of PBS was enhanced. Also, the difference in molecular weight of PPG led to properties being changed to some extent among the copolyesters. CONCLUSION: The synthesized poly(ester‐ether)s having excellent flexibility and biodegradability extend the application of PBS into the areas where biodegradable thermoplastic elastomers are needed. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
The blends of high molecular weight poly(propylene carbonate) (PPC) and poly(butylene succinate) (PBS) were melt blended using triphenylmethane triisocyanate (TTI) as a reactive coupling agent. TTI also serves as a compatibilizer for the blends of PPC and PBS. The blend containing 0.36 wt % TTI showed that the optimal mechanical properties were, therefore, calendared into films with different degrees of orientation. The calendering condition, degree of orientation, morphologies, mechanical properties, crystallization, and thermal behaviors of the films were investigated using wide‐angle X‐ray diffraction, scanning electron microscopy, tensile testing, and differential scanning calorimetry (DSC) techniques. The result showed that the as‐made films exhibited obvious orientation in machine direction (MD). Both tensile strength in MD and the tear strength in transverse direction (TD) increased with increasing the degree of orientation. The orientation of the film also increased the crystallinity and improved the thermal properties of the PPC/PBS blend films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
An aliphatic/aromatic polyester blend has been dealt with in this study. As an aliphatic polyester, poly(butylene succinate) (PBS) was used, which is thought to possess biodegradability, but it is relatively expensive. It has been blended with poly(butylene terephthalate) (PBT) in order to obtain a biodegradable blend with better mechanical properties and lower cost. The miscibilities of PBS–PBT blends were examined not only from the changes of Tg but also from log G′–log G" plots. Dynamic mechanical thermal analyzer (DMTA) was an appropriate, sensitive method to obtain the glass transitions properly. Thermal stabilities of PBS and PBT were also verified at the temperature of 240°C. A transesterification reaction between two polyesters at 240°C was hardly detectable so that it did not affect the miscibilities and properties of the blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 945–951, 1999  相似文献   

11.
In this exploration of novel biodegradable polyesters, multiblock copolymers based on poly(butylene succinate) (PBS) and poly(1,2‐propylene terephthalate) (PPT) were successfully synthesized with hexamethylene diisocyanate as a chain extender. The amorphous and rigid PPT segment was chosen to modify PBS. The structures of the polymers were characterized using 1H NMR and 13C NMR spectroscopy, gel permeation chromatography and wide‐angle X‐ray diffraction; the physical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, mechanical testing and enzymatic degradation. The results indicate that the copolymers possess satisfactory mechanical and thermal properties, with impact strength 186% higher than that of PBS homopolymer, while tensile strength, flexural strength, thermal stability and melting point (Tm) are slightly decreased. Crystallization and biodegradation rates are still acceptable at 5 wt% PPT, although they are decreased by the introduction of PPT. The addition of appropriate amounts of PPT can improve the impact strength effectively without an obviously deleterious effect on tensile strength, flexural strength, thermal stability, Tm, crystallization rate and biodegradability. This study describes a convenient route to novel multiblock copolymers comprising crystallizable aliphatic and amorphous aromatic polyesters, which are promising for commercialization as biodegradable materials. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The effects of corn starch (CS) filler and lysine diisocyanate (LDI) as a coupling agent on the crystallization behavior of a poly(butylene succinate) (PBS)/CS ecocomposite were investigated using differential scanning calorimetry. In isothermal crystallization, n values for pure PBS were from 2.33 to 2.82. On the other hand, both composites showed values of 3 < n < 4. In nonisothermal crystallization, the Avrami exponent varied from 2.12 to 2.55 for pure PBS, from 1.58 to 1.96 for the composite without LDI, and from 1.79 to 1.91 for the composite with LDI, depending on the cooling rate. There was not a large difference of the crystallization rate constant (k) as adjusted by the Jeziornay suggestion. The activation energy for nonisothermal crystallization was also calculated on the basis of three different equations (Augis–Bennett, Kissinger, and Takhor equations). However, the values of the activation energy were in contradiction with the results of the kinetics. The addition of the filler (CS) and coupling agent (LDI) affected the morphological structure of PBS spherulites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1107–1114, 2005  相似文献   

13.
Polymer blends can improve material processability and can be used to extrude partially degraded materials, such as expired poly (butylene adipate-co-terephthalate) (PBAT), which cannot be normally extruded. Therefore, in this study, the extrudability of PBAT that has passed its expiration date was restored by blending it with poly (butylene succinate) (PBS). Various polymer blends were extruded and characterized to achieve high-efficiency extrusion. The carbonyl indices in partially degraded PBAT and the corresponding control sample detailed the effects of 98 months of aging on molecular properties. The semicrystalline structure consisted of a mixed ordered arrangement of PBS and PBAT chains dispersed in an amorphous matrix. The microscopic images of the surfaces of the polymer films revealed defects and roughness, followed by an increase in the PBAT concentration in blends. Changes in mechanical properties and water vapor permeability correlated with the PBAT concentration in the blends. To avoid polymer loss, we reported a simple method for using PBAT that has passed its expiration date and cannot be extruded. The results revealed that the polymer films could be used in the packaging industry, especially in food and agricultural sectors.  相似文献   

14.
Linear and branched poly(butylene adipate)s (PBA) with molecular weights ranging from 2000 to 10,000 g/mol, and a branching agent content between 0 and 1.8%, were solution cast with poly(vinyl chloride) (PVC) to form 50‐ to 60‐μm thick flexible films. Dry films were analyzed by tensile testing, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and optical microscopy (OM) to study the effects of molecular weight and branching on the plasticizing efficiency of the polyester. PBA formed a semimiscible two‐phase system with PVC, where the amorphous part exhibited a single glass transition temperature. The degree of crystallinity for the polyester, surface composition, and mechanical properties of the films depended on the blend composition, molecular weight, and degree of branching of the polyester. Plasticizing efficiency was improved by higher degree of branching. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2180–2188, 2006  相似文献   

15.
Poly(butylene succinate)/magnesium hydroxide (PBS/Mg(OH)2) composites were prepared by melt compounding to investigate the effect of particle size on the flame retardancy of PBS. Their flammability properties were investigated by limiting oxygen index, UL‐94, and cone calorimeter tests, which suggested that the medium‐sized Mg(OH)2‐5 µm displayed the best flame retardancy. The residual char structure were analyzed and indicated that Mg(OH)2‐5 µm could form a better protective layer than other sized particles, leading to the better flame retardancy to PBS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
1,2-丙二醇对可生物降解聚丁二酸丁二醇酯的共聚改性   总被引:2,自引:0,他引:2  
以丁二酸、丁二醇和1,2-丙二醇为原料,采用溶液结合熔融缩聚合成法,得到了一系列聚(丁二酸丁二醇酯-co-丁二酸1,2-丙二醇酯)共聚物P(BS-co-PS)。利用1HNMR、GPC和X射线衍射等方法对共聚物的组成、分子量及其分子量分布、热学性能、结晶性能、力学性能等进行了研究。结果表明:反应4h,即可得到数均分子量60000以上的聚(丁二酸丁二醇酯-co-丁二酸1,2-丙二醇酯)共聚物P(BS-co-PS),分子量分布均小于2.0;随着1,2-丙二醇添加量的增加,共聚物的结晶度降低,熔点下降,但断裂伸长率明显增加,当添加量为30%(摩尔分数)时,断裂伸长率达到417%,表明共聚物具有良好的延展性能;所有共聚物的热分解温度均在300℃以上,具有良好的热稳定性。  相似文献   

17.
PBS is partially crosslinked by using DCP as an initiator. A low gel fraction (<30 wt%) and low crosslink density of the partially crosslinked PBS are obtained at a DCP content of <0.5 wt%. Consequently, the partially crosslinked PBS retains both its processability and its crystallinity. The overall crystallization rate of the PBS is enhanced by partial crosslinking as evidenced by a considerable increase in crystallization temperature (Tc). Meanwhile, the mechanical properties of PBS are significantly improved by the partial crosslinking. The structure/property relationships of the partially crosslinked PBS are explored.

  相似文献   


18.
Prior to curing, we evaluated thermal stability of poly(butylene succinate) (PBS). Above 170°C, PBS was severely degraded and the degradation could not be successfully stabilized by an antioxidant. PBS was crosslinked effectively by DCP at 150°C, and the gel fraction was increased as DCP content increased. The major structure of crosslinked PBS is supposed to consist of an ester and an aliphatic group. The tensile strength and elongation of PBS were improved with increasing content of DCP, but tear strength was only slightly affected. The higher the crosslinking, the lower the heat of crystallization (ΔHc) and heat of fusion (ΔHf). However, the melt crystallization temperature (Tc) of crosslinked PBS was higher than that of PBS. The viscosity of crosslinked PBS increased and exhibited rubbery behavior as the content of curing agent increased. The biodegradability of crosslinked PBS did not seriously deteriorate. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1115–1124, 2001  相似文献   

19.
Poly(butylene succinate)/cellulose diacetate (PBS/CDA) blends were prepared by the solution blending method from poly(butylene succinate) (PBS) and cellulose diacetate (CDA). The influence of hydrogen bond on the structure, morphology, crystallization, as well as the physical properties of PBS/CDA blends was significantly investigated. The fourier transform infrared spectroscopy (FTIR) results indicated that the carbonyl groups of PBS shifted to higher wavenumbers and disappeared at the content of 60% CDA, due to the formation of hydrogen bond between PBS and CDA. The wide‐angle X‐ray diffractometer (WAXD) and differential scanning calorimeter (DSC) analysis suggest that the crystallization of PBS was significantly restricted by the incorporation of CDA, which is also attributed to the hydrogen bonding. The scanning electron miscroscope (SEM) and polarized optical microscopy (POM) results revealed that PBS and CDA were miscible without appearance of obvious phase separation. The hydrogen bonding interaction led to the change of decomposing mechanism of blends as determined by thermogravimetric analysis (TGA), as well as the increase of the elongation at break due to the reduced crystallinity of PBS. The existence of CDA led to the decrease of water contact angle, showing of the improved hydrophilicity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Polyester‐polyether segmented block copolymers of poly[(butylene succinate)‐co‐poly(butylene terephthalate)] (PBS–PBT) and poly(tetramethylene glycol) (PTMG) (Mn = 2000) with various compositions were synthesized. PBT content in the PBS was adjusted to ca. 5 mol %. Their thermal and mechanical properties were investigated. In the case of copolymer, the melting point of the PBS–PBT control was 107.8°C, and the melting point of the copolymer containing 70 wt % of PTMG was 70.1°C. Crystallinity of soft segment was 5 ∼ 17%, and that of hard segment was 42 ∼ 59%. The breaking stress of the PBS–PTMG control was 47 MPa but it decreased with increasing PTMG content. In the case of copolymer containing 70 wt % of PTMG, breaking stress was 36 MPa. Contrary to the decreasing breaking stress, breaking strain increased from 300% for PBS–PBT control to 900% for a copolymer containing 70 wt % of PTMG. The shape recovery ratios of the copolymer containing 70 wt % PTMG were almost twice of those of copolymers containing 40 wt % PTMG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2067–2075, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号