共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper(I) bromide coordinated by the ionic liquid 1‐[(diethyl amine)amine]ethyl‐3‐methyl imidazolium chloride to catalyze the atom transfer radical polymerization of methyl methacrylate in 1‐allyl‐3‐methyl imidazolium chloride 下载免费PDF全文
A coordinating ionic liquid (IL), 1‐[(diethyl amine)amine]ethyl‐3‐methyl imidazolium chloride ([N3MIM]Cl), was prepared as an alternative to a simple organic ligand to coordinate to copper(I) bromide (CuBr). We, thereby, obtained a novel catalyst for atom transfer radical polymerization (ATRP) reactions. This catalyst was applied to the ATRP of methyl methacrylate in the IL 1‐allyl‐3‐methyl imidazolium chloride ([AMIM]Cl). The chemical structures of the ILs obtained were confirmed by Fourier transform infrared spectroscopy, mass spectrometry, and 1H‐NMR analyses. The coordination ability of [N3MIM]Cl was assessed by cyclic voltammetry, and the redox potential of [N3MIM]Cl–CuBr was ?0.507 V. The [N3MIM]Cl–CuBr complex was expected to be a markedly more active catalyst than the amine DETA–CuBr complex. The coordination mode toward CuBr was also examined. The [N3MIM]Cl–CuBr catalyst system showed good controllability in the aforementioned ATRP reaction in [AMIM]Cl. The Cu catalyst was easily separated from the obtained polymer with the coordinating IL as a ligand. Consequently, the coordinating IL overcame the shortcomings of traditional organic ligands, such as poor compatibility with IL media and poor separation of the catalyst from the polymer; this makes it highly promising for applications in the ATRP field. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45484. 相似文献
2.
Qian Wang Xingmei Lu Xueyuan Zhou Minli Zhu Hongyan He Xiangping Zhang 《应用聚合物科学杂志》2013,129(6):3574-3581
Series of 1‐allyl‐3‐methylimidazolium halometallate ionic liquids (ILs) were synthesized and used to degrade poly(ethylene terephthalate) (PET) as catalysts in the solvent of ethylene glycol. One important feature of these new IL catalysts is that most of them, especially [amim][CoCl3] and [amim][ZnCl3], exhibit higher catalytic activity under mild reaction condition, compared to the traditional catalysts [e.g., Zn(Ac)2], the conventional IL catalysts (e.g., [bmim]Cl), Fe‐containing magnetic IL catalysts (e.g., [bmim][FeCl4]), and metallic acetate IL catalysts (e.g., [Deim][Zn(OAc)3]). For example, using [amim][ZnCl3] as catalyst, the conversion of PET and the selectivity of bis(hydroxyethyl) terephthalate (BHET) reach up to 100% and 80.1%, respectively, under atmospheric pressure at 175°C for only 1.25 h. Another important feature is that BHET can be easily separated from the catalyst and has a high purity. Finally, based on the experimental phenomena, in ‐situ infrared spectra, and experimental results, the possible mechanism of degradation with synthesized IL is proposed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
3.
4.
Information on the rheological characteristics of clathrate hydrate slurry is vital due to its diverse applications including hydrate slurry transportation as in seawater desalination by gas hydrate process, gas delivery through slurry pipelines, cold thermal energy storage, and secondary refrigeration by hydrate slurries. The current study experimentally investigated the rheological behavior of Tetrafluoroethane (Freon) hydrate slurry formed from R-134a and water serving as a medium for sea water desalination. Experiments were performed in a flow loop with a volume of 5.68?L and an inner pipe diameter of 21.5?mm, which was immersed in a constant temperature bath to maintain hydrate stable condition. Experiments were conducted with two phases in the loop; solid hydrate particles and liquid water. The hydrate solid volume fraction ranged from 15.8 to 31.7?vol%. Pressure drops along the straight section of the pipe were monitored while temperature, solid volume fraction and flow rate were kept constant at desired values. The experimental results indicated that Freon slurry can be considered as a pseudo-plastic fluid. The shear-thinning characteristics of Freon slurry became more pronounced as the hydrate solid fraction increased. An empirical power law type equation that relates the apparent viscosity of the Freon slurry to the hydrate solid volume fraction and shear rate was developed and compared with experimental values. The experimental results well supported the values of the apparent viscosity calculated from the modeled equations. 相似文献
5.
BACKGROUND: In syntheses of biodegradable and bioresorbable polymers, efficient metal‐free catalysts are very desirable as the resulting products may be more biocompatible. As an attempt to find new metal‐free catalysts, 1,3‐dialkylimidazolium salts, the most commonly used ionic liquids or organic melt salts, were used as single‐component catalysts in the melt polycondensation of L ‐lactic acid for the first time. The resulting poly(L ‐lactic acid) (PLLA) was characterized using gel permeation chromatography, 13C NMR, DSC and polarimetry. RESULTS: It has been found that less bulky substituents on the imidazolium ring are conducive to catalytic activity. PLLA with molar mass of about 20 000 g mol?1 was synthesized at high yield (over 70%) in the presence of various 1,3‐dialkylimidazolium salts. The product exhibits satisfactory color (white to slightly yellow), optical purity (89–95%) and crystallinity (40–55%). A possible catalytic mechanism is proposed. CONCLUSION: As compared with the well‐known binary catalyst system SnCl2 · 2H2O/toluene sulfonic acid, the catalysts used in this investigation are better in terms of increasing PLLA yield and preventing discoloration and comparable in terms of racemization. Copyright © 2008 Society of Chemical Industry 相似文献
6.
7.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001 相似文献
8.
Antimicrobial properties and thermal stability of polycarbonate modified with 1‐alkyl‐3‐methylimidazolium tetrafluoroborate ionic liquids 下载免费PDF全文
Sergiy Rogalsky Kateryna Fatyeyeva Lyudmila Lyoshina Oksana Tarasyuk Olga Bulko Sofiia Lobok 《应用聚合物科学杂志》2014,131(7)
Four water immiscible ionic liquids (ILs): 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, 1‐heptyl‐3‐methylimidazolium tetrafluoroborate, 1‐octyl‐3‐methylimidazolium tetrafluoroborate and 1‐dodecyl‐3‐methylimidazolium tetrafluoroborate have been synthesized. Polycarbonate (PC) films containing ILs were prepared by solvent casting from methylene chloride solutions. Scanning electron microscopy measurements showed the high homogeneity of PC/IL films with the IL content up to 4 wt %. The tendency to IL aggregation was observed for polymeric films with higher IL content (5%). PC/IL composites were found to have the reduced thermal decomposition temperature under both an air and a nitrogen atmosphere in comparison with the neat PC. The effect of IL content on the antimicrobial activity of PC films against Escherichia coli bacteria was studied. Pronounced antimicrobial efficacy was revealed for PC/IL films for all studied ILs starting from 3 wt % of IL. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40050. 相似文献
9.
Evaluation of catalytic activity of two functionalized imidazolium ionic liquids for biodiesel fuel production by a two‐stage process 下载免费PDF全文
Yasir A. Elsheikh Zakaria Man Azmi Bustam Suzana Yusup Faheem H. Akhtar I.K. Mohamed 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2014,89(7):998-1006
10.
Kuan Huang Da‐Niu Cai Yong‐Le Chen You‐Ting Wu Xing‐Bang Hu Zhi‐Bing Zhang 《American Institute of Chemical Engineers》2013,59(6):2227-2235
Solubilities of H2S in five 1‐alkyl‐3‐methylimidazolium carboxylates ionic liquids (ILs) have been measured at temperatures from 293.15 to 333.15 K and pressures up to 350 kPa. It is shown that these ILs have significantly larger absorption capacities for H2S than those common ILs reported in the literature. The solubility is found to increase dramatically with the increasing alkalinity of the anions and slightly with the increasing length of the alkyl chains on the cations. It is further demonstrated that the absorption isotherms are typically nonideal. With the assumption of complex formation between H2S and ILs, a reaction equilibrium thermodynamic model is developed to correlate the experimental solubilities. The model favors a reaction mechanism of AB2 type that two IL molecules interact with one H2S molecule. Thermodynamic parameters such as Henry's law constants, reaction equilibrium constants, and heat of complex formation are also calculated to evaluate the absorption process of H2S in these ILs. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2227–2235, 2013 相似文献
11.
Facile preparation for robust and freestanding silk fibroin films in a 1‐butyl‐3‐methyl imidazolium acetate ionic liquid system 下载免费PDF全文
Silk fibroin film (SFF) with excellent mechanical properties was prepared for the first time with Bombyx mori silk fibroin as the material and 1‐butyl‐3‐methyl imidazolium acetate ([Bmim]OAc) ionic liquid (IL) as the solvent. The aim was to understand whether the microstructure of SFF could be modified and whether the mechanical properties were improved when [Bmim]OAc IL was used as a solution. With this new system, the obtained SFF was easily peeled off of the substrate, and the silk fibroin proteins retained the α‐helix secondary structure (silk I). Further test results show that the tensile strength (126.8–129.7 MPa) and anti‐UV performance were stronger than the silk fibroin regenerated by traditional ways. Therefore, this study provided and identified a new method with [Bmim]OAc to obtain SFF with strong mechanical properties. This facile preparation and related SFF with excellent mechanical strength could have potential applications in biocompatible implants, synthetic coatings for artificial skin, and many other areas. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42822. 相似文献
12.
Enrique Alvarez‐Guerra Angel Irabien Sónia P. M. Ventura João A. P. Coutinho 《American Institute of Chemical Engineers》2014,60(10):3577-3586
Ionic liquid‐based three‐phase partitioning (ILTPP) is a promising technique to recover high‐added value proteins at the liquid–liquid interface. Its economic and environmental performance highly depends on the net ionic liquid consumption. Alternatives to maximize the fraction of ionic liquid that can be recycled are studied. It is demonstrated that the addition of extra salt, previously proposed in literature, has a very limited effect on ionic liquid recovery for relatively high protein concentrations in the feed stream, and that it may even lead to an increase of the ionic liquid losses under certain conditions. However, small additions of salt are shown to be effective and profitable from an economic point of view. Vacuum evaporation is shown to allow for the complete ionic liquid and salt recovery, reinforcing the sustainability and viability of ILTPP processes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3577–3586, 2014 相似文献
13.
Pablo Domínguez de María 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2014,89(1):11-18
Recent years have witnessed the use of different ionic liquids for biomass processing, either at the level of lignocellulose pre‐treatment, to fractionate biomass in its main components, separating hemicellulose and lignin from cellulose, or directly in cellulose decrystallization by dissolving it in the ionic liquid and subsequent precipitation by adding anti‐solvents. Yet, most of the ILs employed in these strategies (e.g. imidazolium‐based solvents) are (still) expensive for such applications, and provide discussable ecological footprints. In an attempt to combine the highly useful generated knowledge with novel neoteric solvents with improved properties, economics, availability and ecology, several new trends have appeared in these areas during recent years. They comprise the use of switchable ILs, based on strong organic bases and CO2, the application of distillable ILs, as well as the use of bio‐based and low‐cost ILs and deep‐eutectic‐solvents (DES), e.g. choline chloride‐based derivatives. Apart from other emerging uses, for all these solvents some preliminary applications in biomass processing involving pretreatments, cellulose dissolution and other applications have been successfully reported. This Minireview contextualizes these recent trends and discusses them with emphasis on future use of them in biorefineries and biomass valorization. © 2013 Society of Chemical Industry 相似文献
14.
A series of thermosensitive hydrogels were prepared from the various molar ratios of N‐isopropylacrylamide, 1‐vinyl‐3‐(3‐sulfopropyl) imidazolium betaine (VSIB), and N,N′‐methylene‐bis‐acrylamide. The influence of the amount of VSIB in the copolymeric gels on the swelling behaviors in water, in various saline solutions, and at various temperatures was investigated. The results indicated that the higher the VSIB content in the hydrogel system, the higher the swelling ratio and the gel transition temperature. In the saline solution the results showed that when the concentration of salt is higher than the minimum salt concentration (MSC) of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. In addition, only the sample containing 12 mol % VSIB (V4) exhibited an antipolyelectrolyte's swelling behavior when the concentration of salt was higher than the MSC of poly(VSIB). This means that the swelling ratio of the hydrogel can be improved with a higher concentration salt solution. In addition, the anion effects were larger than the cation effects in the presence of a common anion (Cl−) with different cations and a common cation (K+) with different anions for the hydrogel. Finally, the more VSIB in the hydrogel, the higher the diffusion coefficient in dynamic swelling. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 14–23, 2000 相似文献
15.
R513A是由R134a/R1234yf(质量分数比为56∶44)组成的新型环保制冷剂,其全球变暖潜能(GWP)值低,不可燃。选择混合制冷剂R513A作为研究对象,在原R134a家用电冰箱中进行制冷剂的替代实验研究。实验依据标准BS EN ISO 15502—2005中规定的工况进行,主要从降温时间、耗电量和冷冻能力三方面对R513A在电冰箱中的性能进行评估并与R134a进行对比。实验结果表明:最佳充注量下,R513A降温时间相比R134a降低21%;24h耗电量实验中相比R134a,R513A系统耗电量降低了3.5%,系统稳定运行时R513A的启停率小于R134a;冷冻能力实验中,同一工况下M包达到相同设定温度,R513A比R134a用时少约42.3min。此外在系统稳定运行时,R513A的系统排气温度低于R134a,其他参数和R134a很接近。通过对比实验可知,在未对原冰箱系统进行任何改动的情况下,R513A可以作为R134a的替代制冷剂直接充注到系统中使用。 相似文献
16.
Influence of a rigid polystyrene block on the free volume and ionic conductivity of a gel polymer electrolyte based on poly(methyl methacrylate)‐block‐polystyrene 下载免费PDF全文
Diblock copolymers poly(methyl methacrylate)‐block‐polystyrene with three different molar ratios [poly(methyl methacrylate)/polystyrene (PS) = 1:1, 1:1.5, and 1:1.8] were synthesized by atom transfer radical polymerization and used as a polymer matrix for gel polymer electrolytes (GPEs). The positron annihilation lifetime spectroscopy was applied to determine the free‐volume behaviors of different GPEs, respectively. We illustrated that a proper PS ratio may led to the formation of a high fraction of free volume, and the influence of the PS ratio on the free‐volume fraction was caused by the different morphologies of the GPEs because of the different packing densities of the PS rigid block. The ionic conductivity was correlated with the free volume in the GPE through the study of the ionic conductivity dependence on the temperature; this followed the Vogel–Tamman–Fulcher equation. Moreover, an ionic conductive model was proposed, in which variations of the free‐volume behavior provide different ionic‐conducting abilities. Thermogravimetric analysis indicated that GPEs based on different block copolymers exhibited high liquid‐electrolyte preservation properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43901. 相似文献
17.
Effect of the ionic liquid [bmim]PF6 on the nonisothermal crystallization kinetics behavior of poly(ether‐b‐amide) 下载免费PDF全文
Blending ionic liquid with crystalline polymer permits the design of new high‐performance composite materials. The final properties of these materials are critically depended on the degree of crystallinity and the nature of crystalline morphology. In this work, nonisothermal crystallization behavior of poly(ether‐b‐amide) (Pebax®1657)/room temperature ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate, [bmim]PF6) was investigated by differential scanning calorimetry. The presence of [bmim]PF6 can retard the nucleation of Pebax®1657 and lead to the crystallization depression of the PA block and the crystalline disappearance of the PEO block. However, the dilution effect of the IL results in a higher growth rate of crystallization of PA block. The influence of [bmim]PF6 content and cooling rate on crystallization mechanism and spherulitc structures was determined by the Avrami equation modified by Jeziorny and Mo's methods, whereas the Ozawa's approach fails to describe the nonisothermal crystallization behavior of Pebax®1657/[bmim]PF6 blends. In the modified Avrami analysis, the Avrami exponent of PA blocks, n > 3, for pure Pebax®1657, while 3 > n > 2 for Pebax®1657/[bmim]PF6 blends testifies the transformation of crystallization growth pattern induced by [bmim]PF6 from three‐dimensional growth of spherulites to a combination of two‐ and three‐dimensional spherulitic growth. Further, lower activation energy for the nonisothermal crystallization of PA blocks of Pebax®1657 can be observed with the increase of [bmim]PF6 content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42137. 相似文献
18.
Room‐temperature ionic liquids (ILs), including 1‐butyl‐3‐methylimidazolium hexafluorophosphate, [bmim+][PF6?], were investigated as replacements for volatile organic compounds in the free‐radical solution polymerization of poly(methyl methacrylate) (PMMA). The latter was synthesized in benzene and [bmim+][PF6?] at 70 °C via a free‐radical process and the degree and rate of polymerization were compared based on the solvent used. The degree of polymerization was found to be five times higher in [bmim+][PF6?] than in benzene, while the rate of reaction was approximately four times faster in [bmim+][PF6?]. The results indicate the potential for using ILs to produce high‐molecular‐weight polymers and block structures based on the increased free‐radical stability in ILs. Copyright © 2004 Society of Chemical Industry 相似文献
19.
Ramalingam Anantharaj Tamal Banerjee 《American Institute of Chemical Engineers》2013,59(12):4806-4815
The tie‐line composition of three quaternary system namely 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][OAc]) ([EMIM][OAc]) (1) + thiophene (2) + pyridine (3) + toluene (4), 1‐ethyl‐3‐methylimidazolium ethylsulphate ([EMIM][EtSO4]) (1) + thiophene (2) + pyridine (3) + toluene (4), 1‐ethyl‐3‐methylimidazolium methylsulphonate ([EMIM][MeSO3]) (1) + thiophene (2) + pyridine (3) + toluene (4) were experimentally determined at 298.15 K. The measured tie‐line data were successfully correlated with the nonrandom two liquid and UNIversal QUAsiChemical model prediction which gave less than 1% root mean square deviation (RMSD). [EMIM][MeSO3] looks to be a promising solvent for the simultaneous separation having distribution ratios less than unity for both thiophene and pyridine. The quantum chemical‐based conductor like screening model for real solvent (COSMO‐RS) model was then used to predict the tie‐line composition of quaternary systems. COSMO‐RS gave the RMSD for the studied systems to be 8.41, 8.74, and 6.53% for the ionic liquids, respectively. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4806–4815, 2013 相似文献
20.
Huma Lateef Sue Grimes Pajaree Kewcharoenwong Benjamin Feinberg 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2009,84(12):1818-1827
BACKGROUND: The production of paper makes use of cellulose and lignin as a raw material, and almost all cellulose and lignin production comes from raw wood materials, contributing to deforestation and resulting in potential environmental harm. It is therefore beneficial to develop technologies for cellulose and lignin recovery for re‐use and sustainability of resources. RESULTS: Three imidazolium based ionic liquids (ILs), 1‐(2‐cyanoethyl)‐3‐methylimidazolium bromide (cyanoMIMBr), 1‐propyl‐3‐methylimidazolium bromide (propylMIMBr) and 1‐butyl‐3‐methylimidazolium chloride (butylMIMCl), were synthesised by microwave technology and fully characterised by mass spectrometry, thermogravimetric differential scanning calorimetry, thin layer chromatography, nuclear magnetic resonance and Fourier transform infrared spectroscopies. Cellulose and lignin were soluble in all three ILs with solubility being greatest in cyanoMIMBr. Regeneration of cellulose and lignin was achieved from saturated solutions of cellulose in IL and lignin in IL for all three ILs. The ILs propylMIMBr and butylMIMBr have been used for the first time in the separation and recovery of cellulose and lignin and regeneration of the IL from a mixture of cellulose and lignin in IL. FTIR analysis confirms successful recovery. CONCLUSIONS: This work demonstrates the ability of ILs to separate and recover cellulose and lignin from a mixed system. Copyright © 2009 Society of Chemical Industry 相似文献