首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The aim of this work was to study the kinetics of water uptake and its influence on mechanical behavior of both flax pulps and their composites with a maleic anhydride polypropylene copolymer (MAPP) modified polypropylene (PP) matrix by immersion in distilled water at 30, 50, 70, and 100°C. Both the influence of two different MAPP compatibilizers and the optimum doses of each ones were analyzed. The kinetics of water uptake was studied from weight measurements at regular interval times. The diffusion coefficient was dependent on the immersion temperature and MAPP content. Tensile modulus and strength of single flax fiber decreased by water immersion. Both flexural strength and modulus of composites decreased as a result of the combined effect of thermal ageing and moisture absorption. MAPP coupling agent increases moisture resistance and mechanical properties for MAPP‐modified systems with respect to the unmodified ones. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3438–3445, 2006  相似文献   

2.
Hybrid composites of Polypropylene (PP) reinforced with intimately mixed short banana and glass fibers were fabricated using Haake twin screw extruder followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both the fibers into PP matrix resulted in an increase in tensile, flexural and impact strength with an increasing level of fiber content upto 30 wt% at banana: glass fiber ratio of 15:15 wt% and 2 wt% of MAPP. The rate of water absorption for the hybrid composites decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has also been analyzed to investigate the interfacial properties. An increase in the storage modulus (E′) of the treated composite indicates higher stiffness. The tan δ spectra confirms a strong influence of fiber contents and coupling agent on the α and β relaxation processes of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out employing differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) which indicated a decrease in the crystallization temperature and thermal stability of PP with the incorporation of MAPP treated banana and Glass fiber.  相似文献   

3.
In this study, the hybrid composites were prepared by stacking jute/PP nonwoven and flax/MAPP woven fabrics in defined sequences. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as matrix materials. Jute and flax fibers were treated with alkali solution in order to improve the interface properties of the resultant composites. The mechanical properties of these hybrid composites were analyzed by means of tensile, flexural, and drop‐weight impact tests. The effect of fabric stacking sequence on the mechanical properties of the composites was investigated. The stacking of nonwovens at the top and in alternate layers has resulted in maximum flexural strength, flexural stiffness, and impact force. It was also shown that hybrid composites have improved tensile, flexural, and impact properties in comparison to neat PP matrix. POLYM. COMPOS., 36:2167–2173, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
In order to improve the compatibility between natural fibers and polypropylene (PP) and polypropylene‐ethylene propylene diene terpolymer (PP‐EPDM) blends, the functionalization of both matrices with maleic anhydride (MA) is investigated in this study. The morphological observations carried out by scanning electron microscopy show that the incorporation of small amounts of functionalized polymer considerably improves the adhesion at the fiber‐matrix interface. In these cases, the fibers are perfectly embedded in the matrix in relation to the composites prepared with the pure homopolymers, and a significant increase in the composite strength is also observed, particularly, after the incorporation of both modified polymers (MAPP and MAEPDM). Thus, it is possible to correlate better interfacial adhesion with the improvement of mechanical properties. It is assumed that the functionalization of the matrix reduces interfacial stress concentrations and may prevent fiber‐fiber interactions, which are responsible for premature composite failure. The crystallization kinetics of PP were also analyzed by differential scanning calorimetry (DSC). It was observed that both flax fiber and rubber behave as effective nucleant agents, accelerating PP crystallization. Moreover, these results are particularly relevant when the grafted matrices are added to the composite. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2170–2178, 2003  相似文献   

5.
Polypropylene (PP) composites containing 20 wt% short flax fibers are prepared, and the process parameters such as throughput, rotational speed, and screw configuration are varied during melt compounding with a corotating intermeshing twin‐screw extruder. The investigations reveal that low rotational speeds, high throughputs, and moderate shear energy inputs by the screw configuration led to an optimum set of mechanical properties. To investigate the influence of different composite compositions on the mechanical properties, composites with fiber contents between 0 and 40 wt% and maleic anhydride‐grafted PP (PP‐g‐MA) contents between 0 and 7 wt% are prepared. Increasing fiber contents enhance the Young's modulus and decrease the elongation at break and the notched impact strength. The tensile strength is barely affected. The addition of PP‐g‐MA increases the tensile strength as well as the elongation at break, whereas the Young's modulus is not influenced. Thus, PP‐g‐MA enhances the adhesion between PP and flax fibers significantly. POLYM. COMPOS., 36:2282–2290, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
制备了反应性单体改性纳米CaCO3填充PP复合材料,研究了反应性单体丙烯酸(AA)和苯乙烯(St)在有、无过氧化二异丙苯(DCP)存在下改性纳米CaCO3填充PP复合材料的力学性能,并用扫描电子显微镜(SEM)研究了复合材料弯曲断面的形态。结果表明,PP/改性纳米CaCO3的力学性能优于PP/微米CaCO3的力学性能;在DCP存在下,AA、AA与St混合改性可使PP/纳米CaCO3的拉伸性能和弯曲性能提高,减小拉伸强度随CaCO3含量增加而下降的趋势;并可有效提高纳米CaCO3在基体中的分散性和界面粘结性。  相似文献   

7.
The purpose of this research was to investigate the water absorption behavior and associated dimensional stability of kenaf‐polypropylene‐filled (PP/KF) composites. Composites with different fiber loadings, ranging from 0 to 40 wt %, were prepared with a twin‐screw extruder followed by hot press molding. The influence of the compatibilizer was also studied for PP/KF composite with 5 wt % maleated PP (MAPP). Water absorption testing was carried out at room temperature for 7 weeks. Tensile, flexural, and impact tests were also performed on control, wet, and re‐dried specimens. Increasing the fiber content resulted in higher water absorption and thickness swelling. The inferior mechanical properties of the wet composites were attributed to the effect of water, which deteriorates the interfacial properties of composites. On re‐drying, all properties were almost recovered because of the recovery of interfacial area as evident in scanning electron micrographs. Incorporation of the MAPP significantly improved the compatibility between the fiber and matrix and the mechanical properties of the composites compared with those without MAPP. It also diminished the water absorption as well as the related thickness swelling in the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Polypropylene (PP)‐clay nanocomposites were obtained and studied by using three different coupling agents, glycidyl methacrylate (GMA), acrylic acid (AA), and maleic anhydride (MA). Three different clays, natural montmorillonite (Cloisite Na+) and chemically modified clays Cloisite 20A and Cloisite 30B, have also been used. Nanocomposites were prepared by melt‐blending in a twin‐screw extruder using two mixing methods: two‐step mixing and one‐step mixing. The relative influence of each factor was observed from structural analysis by WAXD, POM, TEM, and mechanical properties. The results were analyzed in terms of the effect of each compatibilizing agent and incorporation method in the clay dispersion and mechanical properties of the nanocomposite. Experimental results showed that clay dispersion and interfacial adhesion are greatly affected by the kind of matrix modification. The polarity and reactivity of polar groups give as a result better interfacial adhesion and subsequent mechanical performance. PP‐g‐GMA and PP‐g‐MA were better compatibilizing agents than PP‐g‐AA. Better dispersion and exfoliation for the nanoclays were obtained when using two‐step mixing than one‐step mixing conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4748–4756, 2006  相似文献   

9.
Flax fibers are widely used as reinforcements in bio‐based polymer matrix composites. This study investigated the hydrophilic nature and surface purity of flax fiber that affects fiber/matrix adhesion in combination with hydrophobic structural polymers via matrix modification and the utilization of fiber treatment, specifically in a flax/vinyl ester (VE) composite. A new method to manipulate the vinyl ester system with acrylic resin (AR) was developed to produce flax reinforced. On the other hand, different types of chemical and physical treatments were applied on the flax fiber. FTIR was applied to evaluate the effects of surface treatments. Dynamic mechanical analysis (DMA) was used to analyze the unmodified and modified VE resin system. The surface of untreated and treated flax fibers and their composites were analyzed by scanning electronic microscopy (SEM). Sodium ethoxide‐treated flax/VE with 1% (wt) AR caused the best mechanical performance among all the flax/VE composites evaluated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
双单体改性对纳米CaCO3/PP结晶与熔融行为的影响   总被引:2,自引:0,他引:2  
制备了界面改性纳米CaCO3/PP复合材料,用DSC研究了在有、无过氧化二异丙苯(DCP)存在下,反应单体丙烯酸(AA)及苯乙烯(St)对PP结晶与熔融行为的影响。结果表明:AA改性纳米CaCO3/PP可使结晶温度提高;St改性使纳米CaCO3/PP的结晶温度降低,但在DCP存在下结晶温度反而提高。AA和St双单体改性使纳米CaCO3/PP的结晶温度明显降低,但加有DCP的双单体改性却使纳米CaCO3/PP的结晶温度大幅提高,说明双单体接枝物有促进纳米CaCO3表面成核的作用。  相似文献   

11.
The effects of compatibilization on the toughening of polypropylene (PP) by melt blending with styrene/ethylene‐butylene/styrene tri‐block copolymer (SEBS) in a twin‐screw extruder were investigated. The compatibilizers used were SEBS functionalized with maleic anhydride (SEBS‐g‐MA), PP functionalized with acrylic acid (PP‐g‐AA), and bifunctional compound p‐phenylenediamine (PPD). The effects of the compatibilization were evaluated through the mechanical properties as well as through the determination of the phase morphology of the blends by scanning electron microscopy. Reactive compatibilized blends show up to a 30‐fold increase in impact strength compared with neat PP; likely the result of the reaction of the bifunctional compound (PPD) with the acid acrylic and maleic anhydride groups, this increase in strength rendered both morphological and mechanical stability to these blends. The addition of PPD to the blends significantly changed their phase morphologies, leading to larger average diameters of the dispersed particles, probably as a result of the morphological stabilization at the initial processing steps during extrusion, with the occurrence of chemical reactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3466–3479, 2002  相似文献   

12.
Polypropylene (PP)/wood‐fiber (WF) composites were prepared by intermeshing co‐rotating twin screw extruder, and microcellular closed cell PP/WF composite foams were prepared by using pressure‐quenched batch process method. The effect of various compatibilizers on the mechanical properties, morphology, crystallinity, rheological properties, and foamability of PP/WF composites were investigated. The results showed that PP/WF composite with addition of PP‐g‐MA as compatibilizer had the highest tensile strength, stiffness, and crystallinity, after foaming, it showed highest relative density and cell density, as well as the smallest cell size. Higher crystallinity of PP/WF composites, showed higher stiffness and higher relative density. J. VINYL ADDIT. TECHNOL., 19:250–257, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
The recycling of inseparable polymer mixtures usually results in blends with poor mechanical properties. A mixture of PP and PS was taken as a model compound for a recyclate. The effect of adding glass fibers to a mixture of PP/PS (70/30) was studied, with special attention to long glass fiber reinforcement. Test specimens were made in three different ways: by dry blending (direct injection molding), mild compounding with a single screw extruder, and compounding with a twin screw extruder. The fiber concentration was varied from 0 to 30 wt%. The fiber lengths were determined to investigate fiber attrition. The fiber lengths in the samples were 1.09 mm for dry blending, 0.72 mm for single screw compounding, and 0.33 mm for twin screw compounding. The mechanical behavior was studied by unnotched and notched Izod impact and tensile tests. The PP/PS blend had a low fracture strain and low unnotched Izod impact strength compared with a PP homopolymer. With an increasing fiber concentration and fiber length, the modulus, tensile strength, and particularly the impact strength increased. With a 30 wt% glass fiber of the long fiber compound (dry blended), the modulus was raised by a factor of 3.5, the fracture stress by a factor of 2.5 and the unnotched Izod impact strength by a factor of 10. The product quality as judged by the scatter of the data was best for the twin screw compound and poorest for the dry blend. Compounding with a single screw extruder gave fairly constant injection molding product properties, combined with excellent mechanical properties.  相似文献   

14.
Betel nut leaf fiber (BNLF) is a new finding as cellulosic filler for polymer composites. Its main constituents are 75% α‐cellulose, 12% hemicelluloses, 10% lignin, and 3% others matter, viscosity average molecular weight 132,000 and degree of crystallinity 70%. In the present work, BNLF reinforced polypropylene (PP) composites were prepared using heat press molding method. 5–20 wt% short length fiber is taken for getting benefits of easy manufacturing and the fiber was chemically treated with NaOH, dicumyl peroxide (DCP), and maleic anhydride‐modified PP (MAPP) to promote the interfacial bond with PP. The extent of modification of fiber was assessed on the basis of morphology, bulk density, moisture absorption, thermal, and mechanical properties of untreated fiber, treated fiber, and their reinforcing PP composites. The tensile and flexural strength of composites increase with the increase of fiber loading up to 10 and 20 wt%, respectively. It was also observed that Young's modulus and flexural modulus increase with fiber loading. The thermal degradation behavior of resulting composites was investigated. Among the various treated fibers, MAPP‐treated fiber composite showed best interfacial interactions as well as mechanical and thermal properties. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Hybrid composites of polypropylene (PP), reinforced with short banana and glass fibers were fabricated using Haake torque rheocord followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both fibers into PP matrix resulted in increase of tensile strength, flexural strength, and impact strength upto 30 wt% with an optimum strength observed at 2 wt% MAPP treated 15 wt% banana and 15 wt% glass fiber. The rate of water absorption for the hybrid composites was decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has been analyzed to investigate the interfacial properties. An increase in storage modulus (E′) of the treated‐composite indicates higher stiffness. The loss tangent (tan δ) spectra confirms a strong influence of fiber loading and coupling agent concentration on the α and β relaxation process of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out through differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA), indicated an increase in the crystallization temperature and thermal stability of PP with the incorporation of MAPP‐treated banana and glass fiber. POLYM. COMPOS., 31:1247–1257, 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
In this article, a kind of degradable composite was prepared from bamboo fiber (BF), poly lactic acid (PLA), and polypropylene (PP). The mechanical and thermal properties were characterized by the universal testing machine, thermogravimetric analysis, differential scanning calorimetry. In order to improve the compability between BF and polymer matrix several modification on the surface of BF were explored and compared. Moreover, a compatibilizer (maleated PP) was applied to further increase compatibility between the fiber and matrix. It is found that the thermal stability of BF/PP/PLA composites decreased with the increase of maleated polypropylene (MAPP) content. When 5% MAPP was used the tensile strength, flexural strength, and impact strength of composites reached 33.73, 47.18 MPa, and 3.15 KJ/m2, with an increase by 13, 11.7, and 23.5%, respectively, compared with the composites without MAPP. The improvement of mechanical properties is attributed to the fact that irregular grooves and cracks induced by the modification of BF facilitate the infiltration of polymer into fiber due to the strong capillary effect. Furthermore, BF/PP/PLA composites are potential to be used in 3D printing. POLYM. ENG. SCI., 59:E247–E260, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
《Polymer Composites》2017,38(12):2852-2862
Coconut shell fiber‐reinforced polypropylene (PP/CSP) biocomposites were prepared by using hand lay‐out technique with different fractions of the modified fibers. Before proceeding to fabrication method, fibers were made compatible by chemical modification with acrylic acid. The interaction of acrylic modified coconut shell fibers with PP matrix was studied by using Fourier transforms Infrared spectroscopy. The morphology of chemically modified coconut fibers and coconut shell fibers reinforced polypropylene biocomposites were studied by using field emission scanning electron microscope. Due to strong interfacial interaction between PP and CSP, mechanical properties were improved. It was found that the tensile strength, elongation at break and loss modulus, rigidity of PP bio‐composites were investigated as compared with that of virgin PP matrix. The thermal properties of the fabricated biocomposites were investigated by using thermogravimetric analysis. The semi‐ductile properties of the fabricated PP biohybrids were confirmed through erosion ring test. POLYM. COMPOS., 38:2852–2862, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Flax fiber composites with thermoset and thermoplastic polymer matrices have been manufactured and tested for stiffness and strength under uniaxial tension. Flax/polypropylene and flax/maleic anhydride grafted polypropylene composites are produced from compound obtained by coextrusion of granulated polypropylene and flax fibers, while flax fiber mat/vinylester and modified acrylic resin composites are manufactured by resin transfer molding. The applicability of rule‐of‐mixtures and orientational averaging based models, developed for short fiber composites, to flax reinforced polymers is considered. POLYM. COMPOS. 27:221–229, 2006. © 2006 Society of Plastics Engineers  相似文献   

20.
This study arises on the opportunities of using flax fibers as reinforcement for polypropylene (PP) matrix composites. For this purpose, untreated flax fiber bundles obtained by a retting process have been used. For improving compatibility between flax fiber bundles and PP matrix, fiber surface treatments such as maleic anhydride, maleic anhydride polypropylene copolymer, and vinyltrimethoxy silane have been carried out. On the other hand, alkali treatment has also been carried out for fiber modification. The effect of surface modification on tensile properties of single fibers and also on fiber‐matrix interfacial shear strength (IFSS) has been analyzed. Finally, both optical microscopy and atomic force microscopy have been used for characterizing flax fiber microstructural features. The current study completes previous results to elucidate the influence of treatments on fiber surface and flax fiber‐PP interface. POLYM. COMPOS. 26:324–332, 2005. © 2005 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号