首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymers of 2‐hydroxyethyl methacrylate (HEMA) and N‐vinyl‐2‐pyrrolidone (VP) and homopolymers of HEMA and VP were crosslinked in the presence of different mol% of melamine trimethacrylamide (MMAm) and melamine triacrylamide (MAAm) as crosslinkers by bulk radical polymerization. The resultant xerogels were characterized by extracting the soluble fractions and measuring the equilibrium water content. Lower critical solution transition temperatures (LCST) were measured by DSC. The properties of crosslinked HEMA and VP copolymers, VP and HEMA series were evaluated in terms of compositional drift of polymerization, heterogeneous crosslinking, and chemical structure of the relevant components. Soluble fractions of the crosslinked networks were reduced by varying the MAAm and MMAm concentrations. The influence of environmental conditions such as temperature and pH on the swelling behavior of these polymeric gels was investigated. The swelling behaviors of the resulting gels show pH sensitivity. This behavior is explained on the basis that amide groups of VP or crosslinkers could be hydrolyzed to form negatively charged carboxylate ion groups in the produced networks in response to an external pH variation. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
In this work, we study the effect of crosslinkers on the size and swelling properties of temperature sensitive N-isopropylacrylamide (NIPAAm) microgels produced by dispersion polymerization. The crosslinkers studied were N,N′-methylenebisacrylamide (MBA), ethylene glycol dimethacrylate (EGDMA) an 3,9-divinyl-2,4,8,10-tetra-oxaspiro[5.5] undecane (DVA). The type of crosslinker had a major impact on the size and swelling behavior, although the proportion of crosslinker used in each case was low (maximum 5 mol%). The effect can be related to the hydrophilic/hydrophobic characteristics of the crosslinkers. DVA produces smaller hydrogels with reduced swelling ratio, MBA produces bigger microgels with higher swelling ratio, while EGDMA results in an intermediate behavior. With increasing amount of crosslinker used in the synthesis, the extent of the swelling ratio decreases for DVA and EGDMA crosslinked microgels, while increases for MBA crosslinked microgels. There is also a slight effect on the critical transition temperature (T c) of the microgels from 30 °C (DVA) to 34 °C (MBA) as observed in copolymers of NIPAAm with hydrophilic or hydrophobic comonomers.  相似文献   

3.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

4.
A series of biodegradable porous hydrogels, based on thermosensitive N‐isopropylacrylamide (NIPAAm) and biodegradable crosslinker‐polycaprolactone diacrylate (PCLdA) that was synthesized from polycaprolactone diol with acryloyl chloride were prepared by photopolymerization at low temperature. The effect of the crosslinker content and gelation method on the swelling behaviors and physical properties for the poly(NIPAAm) hydrogels was investigated. Results showed that the swelling ratio of the gel in deionized water decreased with an increase of the content of polycaprolactone (PCL) segment in the poly(NIPAAm) hydrogels. The properties of the gels crosslinked with PCLdA were compared with those crosslinked with N, N′‐methylenebisacrylamide (NMBA). The results showed that the critical gel transition temperatures (CGTT) of the gels crosslinked with PCLdA were lower than those of the gels crosslinked with NMBA due to the hydrophobicity of the PCL segment. The results also showed that the gels crosslinked with PCLdA had higher mechanical strength and crosslinking density than those gels crosslinked with NMBA. Comparing the porous gels with nonporous gels, the results showed that the swelling ratio and CGTT of the porous gels were higher than those of the nonporous gels, and the transition temperature curve was smoother for the porous gels. The porous gels also exhibited more rapid thermal response and faster degradation rates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A series of nanocomposite hydrogels were prepared from acrylic acid (AA), N‐isopropylacrylamide (NIPAAm), and intercalated hydrotalcite (IHT) by photopolymerization. The influence of the intercalating content of 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) in HT on the swelling and mechanical properties for poly(AA‐co‐NIPAAm)/IHT nanocomposite hydrogels was investigated. The results showed that the higher the content of the AMPS‐HT was, the higher the swelling ratio of the gels and the higher the content of the intercalating agent was, the lower swelling ratio. It was also demonstrated that the swelling ratio of the gel was not affected by the counterion in HT. The gel strength and crosslinking density were not enhanced by adding AMPS‐HT into the gel composition, but the maximum effective crosslink density and shear modulus of the nanocomposite hydrogels were increased with an increase of the content of the intercalating agent in HT. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1572–1580, 2005  相似文献   

6.
A series of thermosensitive hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm) and sodium‐2‐acrylamido‐2‐methylpropyl sulfonate (NaAMPS). Factors such as temperature and initial total monomer concentration and different pH solutions were investigated. Results indicated that the more the NaAMPS content in hydrogel system, the higher the swelling ratio and the gel transition temperature; the higher the initial monomer concentration, the lower the swelling ratio. The result also indicated that the NIPAAm/NaAMPS copolymeric hydrogels had different swelling ratios in various pH environments. The present gels showed a pH‐reversible property between pH 3 and pH 10 and thermoreversibility. The swelling ratios of copolymeric gels were lower in a strong alkaline environment because the gels were screened by counterions. Finally, the drug release behavior of these gels was also investigated in this article. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1760–1768, 2000  相似文献   

7.
pH‐sensitive poly(N,N‐dimethylaminoethyl methacrylate) hydrogels were synthesized by free‐radical crosslinking polymerization using two different crosslinking agents; tetraethylene glycol dimethacrylate (TEGMA) and N,N′‐methylenebis(acrylamide) (BAAm). The influence of the polymerization factors such as the type of the crosslinking agent and the gel preparation concentration on the swelling behavior, the gel strength, the effective crosslinking density and the average chain length between the crosslink points for the resulting hydrogels was investigated. The results of the equilibrium swelling measurements in water showed that the linear swelling ratio of the resulting hydrogels increases with increasing gel preparation concentration. The swelling ratio of PDMAEMA hydrogels crosslinked with BAAm is larger than those for hydrogels crosslinked with TEGMA over the entire range of the polymer network concentration. The hydrogels exhibit very sharp pH‐sensitive phase transition in a very narrow range of pH between 7.7 and 8.0. From the mechanical measurements, it was also found that the linear swelling ratio of resulting hydrogels depends on the crosslinking density and also the type of the crosslinker used in the preparation. The resulting hydrogels are thought to be good candidates for pH‐sensitive drug delivery systems. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
A new method was used for the production of fast‐responding bulk hydrogels with microstructure (BHMs) with a high swelling ratio. These BHMs were synthesized first by the formation of poly(N‐isopropylacrylamide‐co‐acrylic acid) (NIPAAm–AA) microgel particles and then by the crosslinking of the particles with N‐isopropylacrylamide monomer. The polymer obtained had the desired microstructure but was bulk (monolithic), so it could be used in a variety of applications. The NIPAAm–AA microgel particles were characterized with transmission electron microscopy, and the formed BHMs were characterized with scanning electron microscopy. Compared with conventional bulk hydrogels, the BHMs had very high swelling ratios and much faster swelling rates attributable to the collaboration of the ionized microgel particles and bulk hydrogels. An increase in the microgel particles embedded in the BHMs provided faster hydrogel swelling. The number of ionic acrylic acid groups in the hydrogels affected their swelling behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 169–178, 2002  相似文献   

9.
A series of N‐isopropylacrylamide/3‐methyl‐1‐vinylimidazolium iodide (NIPAAm/MVI) copolymer gels were prepared from the various molar ratios of NIPAAm, cationic monomer MVI, and N,N′‐methylene bisacrylamide (NMBA) in this study. The influence of the amount of MVI in the copolymer gels on the swelling behaviors was investigated in various aqueous saline solutions. Results showed that the swelling ratios (SRs) of copolymer gels were significantly greater than those of NIPAAm homopolymer gels, and the higher the MVI content, the higher the volume phase transition temperature. The SRs for the NIPAAm/MVI copolymer gels decreased with an increase of the salt concentration. In various saline solutions, results showed that the effect of divalent ions on the SR was greater than that of monovalent ions for these hydrogels. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3242–3253, 1999  相似文献   

10.
Thermo‐responsive poly(N‐isopropylacrylamide) (poly(NIPAAm)) and pH‐responsive poly(N,N′‐diethylaminoethyl methacrylate) (poly(DEAEMA)) polymers were grafted to carboxymethylchitosan (CMC) via radical polymerization to form highly water swellable hydrogels with dual responsive properties. Ratios of CMC, NIPAAm to DEAEMA used in the reactions were finely adjusted such that the thermo and pH responsiveness of the hydrogels was retained. Scanning electron microscopy (SEM) indicated the formation of an internal porous structure for the swollen CMC hydrogels upon incorporation of poly(NIPAAm) and poly(DEAEMA). Effect of temperature and pH changes on water swelling properties of the hydrogels was investigated. It was found that the water swelling of the hydrogels was enhanced when the solution pH was under basic conditions (pH 11) or the temperature was below its lower critical solution temperature (LCST). These responsive properties can be used to regulate releasing rate of an entrapped drug from the hydrogels, a model drug, indomethacin was used to demonstrate the release. These smart and nontoxic CMC‐based hydrogels show great potential for use in controlled drug release applications with controllable on‐off switch properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41505.  相似文献   

11.
Poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels were synthesized using gamma‐radiation‐initiated polymerization. The progress of copolymerization and crosslinking was observed by viscosity measurement on reaction mixtures subjected to varying radiation doses. The copolymer gels were characterized by differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, infrared spectroscopy, and elemental analysis. The swelling behavior and other properties of the gels were found to be very similar to those of poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels synthesized using conventional free‐radical initiation in the presence of crosslinkers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1322–1330, 2003  相似文献   

12.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

14.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

15.
A series of crosslinked copolymers with cationic nature have been prepared based on acrylamide (AAm) and [3‐(methacryloylamino)propyl]trimethyl ammonium chloride (MAPTAC) using N,N′ methylene‐bis‐acrylamide (MBA) as crosslinking agent. Taguchi's method has been employed for the purpose of formulation design and optimization as well as investigating the effects of various compositional parameters, such as total monomer concentration, cationic monomer and crosslinking agent concentration. The swelling behaviour of the synthesized gels in electrolyte solutions composed of ions with different valency has been studied and compared with an anionic‐based superabsorbent. The swelling capacity and absorbency were found to be enhanced with increase of the MAPTAC moieties of the copolymer chains, and therefore increase of their cationic character. All the cationic hydrogels prepared had greater swelling capacity, with less change in their swelling behaviour, when immersed into aqueous solutions containing multivalent cations. The anionic‐based hydrogels collapsed in similar ionic solutions with moderate‐to‐high ionic strength and did not show any tendency to re‐swell. The complex modulus (G*) of the crosslinked copolymers in the equilibrium swollen state was measured by rheomechanical spectroscopy and was correlated with the chemical composition of the network. Thermogravimetric analysis of the dry cationic superabsorbent showed more bound water but similar thermal behaviour to crosslinked polyacrylamide Copyright © 2003 Society of Chemical Industry  相似文献   

16.
In this study, a series of chitosan‐graft‐poly(N‐isopropylacrylamide) (CTS‐g‐PNIPAAm) copolymers based on different molecular weight (Mw) of CTS and NIPAAm were synthesized through the polymerization of NIPAAm in an acid aqueous solution. The structures were verified by Fourier transform infrared and nuclear magnetic resonance. The influence of the CTS Mw on the properties of the resulting copolymers and self‐assembled nanoparticles was fully examined. The grafting ratio and grafting efficiency of the copolymers increased with the CTS Mw. All the copolymers have a similar low critical solution temperature of 33.5°C, which was independent of the CTS Mw. Furthermore, the copolymers were less temperature sensitive, when CTS Mw increased to 200 kDa. Besides, once the CTS Mw increased to 700 kDa, the copolymers were less pH sensitive near the tumor site (from pH 7.4 to 6.8). The copolymers could form uniform nanoparticles once the temperature increased to 34°C, which was reversible. After crosslinking by N,N‐methylenebisacrylamide (MBA), structurally stable nanoparticles could be obtained. The results from Transmission electron microscope (TEM) and Atomic force microscopy (AFM) showed that the MBA crosslinked nanoparticles were uniformly spherical with a loose structure. Surface tension method indicated that the critical aggregate concentrations were 0.045, 0.042, 0.037, and 0.036 mg mL?1 prepared from CTS 50, 100, 200, and 700 kDa, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Hydrogels consisting of sodium alginate and N‐isopropylacrylamide covalently crosslinked with N,N′‐methylenebisacrylamide were prepared. The mixed‐interpenetrated networks obtained were characterized using elemental analysis, Fourier transform infrared and Raman spectroscopy, swelling measurements and environmental scanning electron microscopy. The thermo‐ and pH‐responsive properties of these hydrogels were evidenced by their swelling behaviour, which depended also on the amount of crosslinking agent and hydrogel composition. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Stimuli‐responsive hydrogels prepared from poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) and its copolymers have attracted much interest to serve in biomedical and pharmaceutical applications. To investigate pH‐dependent swelling and elasticity, a series of cationic hydrogels based on N,N‐dimethylaminoethyl methacrylate were prepared by free radical crosslinking copolymerization at 60 °C in the presence of tetraethylene glycol dimethacrylate as the crosslinker. The equilibrium swelling and the mechanical properties of the PDMAEMA hydrogels were investigated as a function of the gel preparation concentration. To explain the effect of pH on the equilibrium swelling of the hydrogels, pH‐dependent swelling studies were carried out in solutions of pH ranging from 2.1 to 10.7. It was found that the PDMAEMA hydrogels exhibit a rapid pH‐dependent phase transition in aqueous solutions; that is, the gels first remain in the swollen state at acidic pH then collapse in a very narrow range of pH. The results showed that the volume of PDMAEMA hydrogels in acidic conditions is about 10‐ to 40‐fold larger than that in the basic pH region. By using the Flory–Rehner theory, the characteristic network parameters of the PDMAEMA hydrogels were calculated and good agreement obtained between the swelling equilibria of hydrogels and their mechanical properties over the whole range of gel preparation concentration. © 2012 Society of Chemical Industry  相似文献   

19.
Thermo‐ and pH‐sensitive polymers were prepared by graft polymerization or blending of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm). The graft copolymer and blend were characterized by Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction measurements, and solubility test. The maximum grafting (%) of chitosan‐g‐(N‐isopropylacrylamide) (NIPAAm) was obtained at the 0.5 M NIPAAm monomer concentration, 2 × 10−3 M of ceric ammonium nitrate initiator and 2 h of reaction time at 25°C. The percentage of grafting (%) and the efficiency of grafting (%) gradually increased with the concentration of NIPAAm up to 0.5 M, and then decreased at above 0.5 M NIPAAm concentration due to the increase in the homopolymerization of NIPAAm. Both crosslinked chitosan‐g‐NIPAAm and chitosan/PNIPAAm blend reached an equilibrium state within 30 min. The equilibrium water content of all IPN samples dropped sharply at pH > 6 and temperature > 30°C. In the buffer solutions of various pH and temperature, the chitosan/PNIPAAm blend IPN has a somewhat higher swelling than that of the chitosan‐g‐NIPAAm IPN. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1381–1391, 2000  相似文献   

20.
Poly (acrylamide‐co‐methyl methacrylate) hydrogels of different ratios were prepared by using chemical and physical crosslinks to study the effect of nature of crosslinks on swelling behavior of hydrogels. The chemically crosslinked gels were prepared by using NN′‐methylene bis acrylamide, while physically crosslinked hydrogels were prepared by precipitation polymerization method, using dioxane as solvent. Detailed swelling kinetics such as swelling ratio, transport exponent n, diffusion coefficient D and the effect of pH on equilibrium swelling studies. The study revealed that the nature of crosslinks alter the swelling characteristics of the hydrogel. In chemically crosslinked hydrogels the water transport is Fickian in nature, while in the case of the physically crosslinked hydrogels the water transport mechanism is anomalous indicating major change in relaxation mechanism due to nature of crosslinks. The results also indicate that with increasing acrylamide content the swelling ratio of the hydrogels were also increased, but the transport exponent n remains nearly constant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 779–786, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号