首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solid-state chemical reaction occurs when a solvent cast film of a blend of masticated natural rubber and chlorinated natural rubber is heated in the presence of air at 150°C. The thermal behavior of solvent cast films of chlorinated natural rubber, masticated natural rubber, and a 1 : 1 w/w blend (2% w/v in xylene) of these two polymers has been studied using differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy, and nuclear magnetic spectroscopy. The results suggest that carbonyl groups are incorporated into the blend on heating and that the vinyl functionality of the isoprene units is modified during this apparent oxidation. Heating for 2 h at 150°C results in a material that no longer contains the rubber-like cis-1,4-polyisoprene units. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1379–1384, 1997  相似文献   

2.
Peel and shear strength of two grades of epoxidized natural rubber (ENR 25 and ENR 50)‐based pressure‐sensitive adhesive was studied. Coumarone‐indene resin was used as the tackifier, whereas toluene was chosen as the solvent throughout the experiment. The tackifier loading was varied from 0 to 80 parts per hundred parts of rubber (phr). A SHEEN hand coater was used to coat the adhesive on substrate to give a coating thickness of 30, 60, 90, and 120 μm. Peel strength and shear strength of the adhesive were determined by using a Lloyd adhesion tester and Texture analyzer, respectively. Results show that maximum peel strength occurs at 40 phr of coumarone‐indene resin for both ENRs studied an observation, which is attributed to the maximum wettability of the substrate. However, the shear strength shows a gradual decrease with increasing tackifier loading because of the decrease in cohesive strength of adhesive. ENR 25 consistently indicates higher peel strength and shear strength than ENR 50. Generally, peel and shear strength increases with coating thickness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007.  相似文献   

3.
This article focuses mainly on the effect of maturation time on the rheological behavior of unvulcanized natural rubber (NR)–styrene butadiene rubber (SBR) latex blends. Viscosity shows a composition-dependent behavior with maturation time. It was found that there is a marginal decrease in viscosity for all the systems with maturation time except for the 70/30 NR–SBR blend. In this blend, there is a sharp decrease in viscosity with maturation time. This is associated with the exchange of stabilizers with one another until an equilibrium is reached; that is, all the particles of the blend are stabilized with random mixture of stabilizers. The structural build up observed in 70/30 NR–SBR blend was found to be diminished as the maturation time increases. At equilibrium, there is no further exchange of stabilizers. The behavior of this blend has been explained with the help of a schematic model. The effects of blend ratio and surface active agents on the viscosity were also studied. In addition, the time-dependent flow behavior of prevulcanized latex blends was evaluated as a function of vulcanizing systems and prevulcanization time. There is a regular increase in viscosity with prevulcanization time. However, after 3 h, the viscosity of almost all blends levels off, indicating that the curing reaction is complete within this time. Finally, the morphological changes occurred during film formation of the blends were studied using scanning electron microscopy. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1473–1483, 1998  相似文献   

4.
A major problem in most natural rubber latex (NRL) commonly encountered like other polymer is susceptibility to mechanical properties and thermal degradation; particularly in thin film due to the presence of double bonds in the main chain. Therefore, it is desirable to seek for ways of improving these properties. Silica aerogel is a material with extraordinary properties was believed to have potential enhance properties in NRL films because of its high specific surface area. Therefore, based on the unique character of silica aerogel, NRL‐silica aerogel film was developed by latex compounding and dry coagulant dipping to form thin film where silica aerogel acts as filler. Silica aerogel, synthesized from rice husk was dispersed in a ball‐mill using distilled water for NRL compounding. Results indicate that increasing silica aerogel loading enhances the mechanical properties of the NRL‐silica aerogel film. Effects of postvulcanization processes were also investigated, whereby the best reinforcing effect was obtained at 4 phr silica aerogel loading with leaching postvulcanization condition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

6.
Blends of styrene–butadiene rubber (SBR) and natural rubber (NR) were prepared and their morphology, transport behavior, and dynamic mechanical and mechanical properties were studied. The transport behavior of SBR/NR blends was examined in an atmosphere of n‐alkanes in the temperature range of 25–60°C. Transport parameters such as diffusivity, sorptivity, and permeability were estimated. Network characterization was done using phantom and affine models. The effect of the blend ratio on the dynamic mechanical properties of SBR/NR blends was investigated at different temperatures. The storage modulus of the blend decreased with increase of the temperature. Attempts were made to correlate the properties with the morphology of the blend. To understand the stability of the membranes, mechanical testing was carried out for unswollen, swollen, and deswollen samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1280–1303, 2000  相似文献   

7.
Polystyrene‐modified natural rubber (SNR) was prepared in the laboratory and subsequently used as compatibilizer in polypropylene/natural rubber (PP/NR) blends. The effect of SNR (at 5%, 10%, 15% and 20% by volume) in PP/NR (70/30) blend was studied by maintaining the rubber volume while PP volume was replaced by SNR accordingly. The sequence of mixing was found to affect the blend morphology and tensile properties. The effect of curatives on the tensile properties of the blends was also investigated. The addition of curatives into the rubbers in PP/NR/SNR improved the tensile properties significantly compared with the PP/NR reference blend. For a semi‐efficient curative system, SNR loading at 10% gave the best overall tensile properties, while for an efficient curative system, 5% SNR loading resulted in improvements in tensile strength and stiffness of over 20% and 40%, respectively, compared with the reference. © 2002 Society of Chemical Industry  相似文献   

8.
A conventional vulcanization system containing tetrabutylammonium bis(4‐methylphenyldithiocarbimato)zincate(II) (ZNIBU) was used for curing of natural rubber (NR) compounds. Rheometric (ts1, t90, and CRI) and mechanical properties, such as tensile and tear strengths and modulus at 300%, were measured to evaluate the acceleration potential of ZNIBU. Commercial accelerators (TMTD, MBTS, and CBS) and a binary system CBS/ZNIBU were also tested for comparison purposes. It was observed that ZNIBU alone does not give either safe scorch time or cure rates appropriate for industrial applications. Nevertheless, mechanical properties are comparable to those given by the other accelerators used. As for the binary system, positive synergistic effects can be found in tear strength and modulus of NR vulcanizates. Besides, ZNIBU does not contribute for the formation of nitrosamines in the vulcanization process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
A novel organomodified montmorillonite prepared by solid‐state method and its nanocomposites with natural rubber were studied. The nanocomposites were prepared by traditional rubber mixing and vulcanizing process. The properties of solid‐state organomodified montmorillonite were investigated by Fourier‐transform infrared spectroscopy (FITR) and thermogravimetric analysis (TGA). The dispersion of the layered silicate in rubber matrix was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the nanocomposites consisting of solid‐state organomodified montmorillonite and natural rubber are obtained. The solid‐state organomodified montmorillonite can not only accelerate the curing process, but also improve the mechanical and aging resistance properties of NR. The properties improvement caused by the fillers are attributed to partial intercalation of the organophilic clay by NR macromolecules. In addition, the dynamic mechanical analysis (DMA) results showed a decrease of tanδmax and increase of Tg when the organoclay is added to the rubber matrix, which is due to the confinement of the macromolecular segments into the organoclay nanolayers and the strong interaction between the filler and rubber matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Natural rubber (NR) is emblematic of sustainability compared to synthetic rubber. However, the tradition of adding sulfur as a vulcanization ingredient results in the release of toxic substances and the potential for health issues. In this study, a feasible strategy was proposed to replace sulfur and discover a safe bulk modification process for NR films. The results have shown that the NR particle size was disintegrated to below 10 nm by gamma irradiation. High tension strength up to 24.45 MPa was observed in the vulcanized NR blend film, which could be elongated up to 800% strain after exposure to an optimum dose of 14 kGy. In comparison to commercial NR latex and nitrile gloves, the vulcanized NR/ SIS films exhibited better chemical resistance ability against hexane, methanol, toluene, and acetone, as revealed by the permeation test. The appearance of amorphous regions and highly oriented NR crystallites was observed through transmission electron microscopy. Findings from this study propose the vacuum radiation strategy that can replace conventional vulcanization methods, resulting in NR films with high mechanical and barrier performance. Furthermore, the emission of toxic substances is reduced by this green process, making it practically useful for potential chemical-resistant examination glove applications.  相似文献   

11.
天然橡胶增韧聚氯乙烯的研究   总被引:1,自引:0,他引:1  
采用未改性的标准天然橡胶(NR)作增韧剂,通过机械共混法制备增韧聚氯乙烯(PVC)复合材料,考察了NR和增容剂用量对PVC增韧效果以及力学性能的影响.结果表明:当NR用量为10份时,材料的冲击强度最高为24.87 kJ/m2;加入增容剂环氧化天然橡胶(ENR)后,材料的冲击强度随其用量的增加而增大,在ENR为5份时其冲击强度为69.86 kJ/m2;氯化聚乙烯(CPE)作增容剂时,其冲击强度先升后降,在4份时达到峰值103.93 kJ/m2;氯化橡胶(CNR)作增容剂在3份时,其冲击强度达到最佳值35.37 kJ/m2;增容增韧后共混物的拉伸强度普遍降低.  相似文献   

12.
The cure characteristics and mechanical properties of blends consisting of hydrogenated natural rubber (HNR) and natural rubber (NR) blends were investigated. The HNR/NR blends at 50/50 wt ratio were vulcanized using various cure systems: peroxide vulcanization, conventional vulcanization with peroxide, and efficient vulcanization with peroxide. The HNR/NR vulcanizates cured by the combination of peroxide and sulfur donor (tetramethylthiuram disulfide, TMTD) in the efficient vulcanization with peroxide exhibited the best mechanical properties. It was also found that the hydrogenation level of HNR did not affect the tensile strength of the vulcanizates. The tensile strength of the blends decreased with increasing HNR content because of the higher incompatibility to cause the noncoherency behavior between NR and HNR. However, the HNR/NR vulcanizate at 50/50 wt ratio showed the maximum ultimate elongation corresponding to a co‐continuous morphology as attested to by scanning electron micrographs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The investigation characterizes the rate-dependent uniaxial stress–strain behavior of several polymeric materials. The characterization is done using both a mechanical model with rate-dependent elements and a general nonlinear theory of viscoelasticity. Experimental data were gathered on a Laminac polyester resin, and further data on polycarbonate and PMMA were collected from the work of Brinson. The mechanical model could be called a modified Bingham type, while the nonlinear viscoelastic theory was the single integral constitutive model proposed by Bernstein, Kearsley, and Zapas. Results from the mechanical model gave good agreement with the experimental data, the maximum difference being about 10%. The BKZ theory predictions modeled the data to within 5–12% average error.  相似文献   

14.
Transparent nonporous membranes were prepared by blending natural rubber (NR) with epoxidized NR (ENR). These blend membranes were evaluated for the selective separation of chlorinated hydrocarbons from acetone. The flux and selectivity of the membranes were determined both as a function of the blend composition and feed mixture composition. Results showed that polymer blending method could be very useful to develop new membranes with improved permselectivity. Pervaporation properties could be optimized by adjusting the blend composition. NR/ENR 70/30 and NR/ENR 30/70 composition showed a decrease in flux and selectivity, whereas the 50/50 composition showed increased flux and increased selectivity. Chlorinated hydrocarbons permeated preferentially through all the tested membranes. The feed mixture composition also strongly influenced the pervaporation characteristics of the blend membranes. Permselectivity was found to depend on the molecular size of the penetrants. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2365–2379, 1999  相似文献   

15.
Blends of natural rubber (NR) and synthetic rubbers are widely used in the rubber industry to meet specific performance requirements. Further, the emerging field of organomodified clay/rubber nanocomposites could provide a host of novel materials having a unique combination of properties to meet various stringent service conditions. Previous studies have shown that at very low dosages, china clay (kaolin) modified with sodium salt of rubber seed oil (SRSO) improved the cure characteristics and physico‐mechanical properties of NR. Results of the present study show improved cure characteristics and physico‐mechanical properties for blends of NR with butadiene rubber and nitrile rubber containing 4 phr of SRSO‐modified kaolin as indicated by reduction in optimum cure time along with higher tensile strength, tensile modulus and elongation at break for their vulcanizates as compared to those containing unmodified kaolin. The SRSO‐modified kaolin/rubber nanocomposites showed improved flex resistance, reduced heat build‐up, tan delta and loss modulus and higher chemical crosslink density index, indicating a reinforcing effect of the SRSO‐modified kaolin, enabling the nanocomposites to have potential industrial applications. © 2015 Society of Chemical Industry  相似文献   

16.
采用不同偶联剂对淀粉活化改性,通过直接共混法制备淀粉/天然橡胶复合材料。研究了淀粉种类、添加量及偶联剂对复合材料的拉伸性能、硬度、耐磨性的变化规律。结果表明:改性后淀粉/天然橡胶复合材料的拉伸性能、硬度、耐磨性明显增加,而改性后木薯淀粉/天然橡胶复合材料的力学性能最佳;采用质量分数为3%的有机硼偶联剂对橡胶材料的改性效果最好。  相似文献   

17.
Onium ion‐modified montmorillonite (organoclay) was melt compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) was used in 10 parts per hundred rubber (phr) as a compatibilizer. The effect of organoclay with different filler loading up to 10 phr was studied. Cure characteristics were determined by a Monsanto MDR2000 rheometer, whereas the tensile, compression, and tear properties of the nanocomposites were measured according to the related ASTM standards. While the torque maximum and torque minimum increased slightly, both scorch time and cure time reduced with the incorporation of organoclay. The tensile strength, elongation at break, and tear properties went through a maximum (at about 2 phr) as a function of the organoclay content. As expected, the hardness, moduli at 100% (M100) and 300% elongations (M300) increased continuously with increasing organoclay loading. The compression set decreased with incorporation of organoclay. The dispersion of the organoclay in the NR stocks was investigated by X‐ray diffraction and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1083–1092, 2006  相似文献   

18.
综述了纳米氧化锌制备、改性方法对NR性能的影响,以及纳米氧化锌复合材料的应用研究情况。纳米氧化锌粒径小,比表面积大,具有表面效应和高活性。改性的纳米氧化锌可以在天然橡胶中实现良好分散,可达到提高胶料性能目的,同时降低了ZnO的用量。应用于汽车轮胎、减震器、橡胶止水带,效果显著,符合当今环保发展的趋势。  相似文献   

19.
The effect of various halloysite nanotubes (HNTs) loading on fatigue life, stress–strain behavior, and hysteresis of HNTs/Standard Malaysian Rubber (SMR) L and HNTs/epoxidized natural rubber (ENR) 50 nanocomposites were studied. The addition of HNTs caused decrement in fatigue life for both nanocomposites at any extension ratio. Generally, HNTs/SMR L nanocomposites showed higher fatigue life than ENR 50 nanocomposites. Addition of more HNTs caused decrement of stress for HNTs/SMR L nanocomposites, whereas HNTs/ENR 50 nanocomposites showed vice versa at any strain. This result was supported by the graph of accumulated strain energy against extension ratio. Hysteresis values increased with addition of HNTs in both nanocomposites where of HNTs/ENR 50 nanocomposites exhibited higher hysteresis than HNTs/SMR L nanocomposites at any HNTs loading. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The influence of trans‐polyoctylene rubber (TOR) on the mechanical properties, glass‐transition behavior, and phase morphology of natural rubber (NR)/acrylonitrile–butadiene rubber (NBR) blends was investigated. With an increased TOR level, hardness, tensile modulus, and resilience increased, whereas tensile strength and elongation at break tremendously decreased. According to differential scanning calorimetry and dynamic mechanical analysis, there were two distinct glass‐transition temperatures for a 50/50 NR/NBR blend, indicating the strongly incompatible nature of the blend. When the TOR level was increased, the glass transition of NBR was strongly suppressed. NBR droplets of a few micrometers were uniformly dispersed in the continuous NR phases in the NR/NBR blends. When TOR was added to a 50/50 NR/NBR blend, TOR tended to be located in the NR phase and in some cases was positioned at the interfaces between the NBR and NR phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 125–134, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号