首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene/natural rubber (GE/NR) nanocomposites were prepared by a modified latex mixing method combined with in situ chemical reduction. It was found that the GE nanosheets are well dispersed and have strong interfacial interaction with NR. Thus, adding a low content of GE can remarkably increase the tensile strength and the initial tensile modulus of NR. With incorporation of as low as 0.5 phr of GE, a 48% increase in the tensile strength and an 80% increase in the initial tensile modulus are achieved without sacrificing the ultimate strain. But further increasing the GE loading degrades the tensile strength and the ultimate strain. Dynamic mechanical measurement indicates that the storage modulus of the nanocomposites is greatly enhanced with addition of GE, while the loss tangent peak is depressed due to the reduced mobility of the rubber molecules. The reinforcement effect of GE on NR is interpreted as a change in the strain induced crystallization and network structure of the nanocomposites, based on the analysis of Mooney ? Rivlin plots and the tube model.© 2013 Society of Chemical Industry  相似文献   

2.
The morphology, mechanical and viscoelastic behavior of latex blends of unvulcanized natural rubber (NR) with carboxylated styrene‐butadiene rubber (XSBR) were investigated, with special reference to the effect of the blend ratio, temperature, and frequency. Mechanical properties like tensile strength, modulus, and elongation at break were also studied. As the XSBR content increased, the tensile strength increased up to a 50:50 NR/XSBR ratio and then decreased as a result of the self‐curing nature of XSBR. The dynamic mechanical properties of these latex blends were analyzed for loss tangent, storage modulus, and loss modulus. The entire blend yielded two glass‐transition temperatures, which corresponded to the transitions of individual components, indicating that the system was immiscible. To determine the change in modulus with time, a master curve of 50:50 NR/XSBR blends was plotted. Time–temperature superposition and Cole–Cole analysis were done to understand the phase behavior of the latex blends. The experimental and theoretical values of storage modulus of blends were compared using the Kerner and Halpin–Tsai models. With the help of optical micrographs, attempts were made to correlate the morphology and viscoelastic behavior of these blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2639–2648, 2003  相似文献   

3.
Siliceous earth (SE), which has a special morphology and structure, was selected as filler of natural rubber (NR) and mechanical properties of compounds were analyzed. Two processes were employed to prepare SE/NR compounds described as mechanical mixing method and latex method, respectively. Cure characteristics, mechanical properties of the vulcanizates prepared from the masterbatches were compared with those prepared by mechanical mixing method. X‐ray diffraction results of NR/SE vulcanizations indicated that mechanical mixing above the latex process facilitated the intercalation of NR into the galleries of SE. The results of mechanical properties show that SE has good reinforcing properties on NR both by latex or mechanical mixing process. By comparison, H samples show slightly higher crosslink density, tensile strength, 300% modulus, and lower elongation at break than M sample in same loading. But in the aspect of dynamic properties there exist obviously difference between latex and mechanical mixing process. Rubber processing analyzer (RPA) results showed that uncured M samples showed obviously higher storage modulus than that of H samples. The heat build‐up of M30 is much lower than that of H30. These behaviors indicated better dynamitic properties when the masterbatches prepared by the predispersing method was utilized. POLYM. ENG. SCI., 58:1043–1052, 2018. © 2017 Society of Plastics Engineers  相似文献   

4.
Thermoplastic chitosan/natural rubber blends (Cs/NR) were prepared from natural rubber latex and chitosan by solution casting technique. The blends were characterized by mechanical analysis (stress–strain) and the mechanical properties were found to vary with chitosan/natural rubber ratios. Experimental values were compared with different theoretical models. Effect of thermal aging on mechanical properties was also investigated. Dicumyl peroxide was used as the crosslinking agent. The effect of crosslinking on mechanical properties of Cs/NR has also been studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Skim natural rubber latex (SNRL) is a protein rich by‐product obtained during the centrifugal concentration of natural rubber (NR) latex. A new method to recover rubber hydrocarbon and to obtain nanocomposites with organoclay (OC) was investigated. The approach involved treatment of SNRL with alkali and surfactant, leading to creaming of skim latex and removal of clear aqueous phase before addition of OC dispersion. Clay mixed latex was then coagulated to a consolidated mass by formic acid, followed by drying and vulcanization like a conventional rubber vulcanizate. X‐ray diffraction (XRD) studies revealed that NR nanocomposites exhibited a highly intercalated structure up to a loading of 15 phr (parts per hundred rubber) of OC. Transmission electron microscopy studies showed a highly exfoliated and intercalated structure for the NR nanocomposites at loadings of 3–5 phr organically modified montmorillonite (OMMT). The presence of clay resulted in a faster onset of cure and higher rheometric torque. The rubber recovered from skim latex had a high gum strength, and a low amount of OC (5 phr) improved the modulus and tensile strength of NR. The high tensile strength was supported by the tensile fractography from scanning electron microscopy. Thermal ageing at 70°C for 6 days resulted in an improvement in the modulus of the samples; the effect was greater for unfilled NR vulcanizate. The maximum degradation temperature was found to be independent of the presence and concentration of OC. The increased restriction to swelling with the loading of OC suggested a higher level of crosslinking and reinforcement in its presence. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3277–3285, 2006  相似文献   

6.
Nanocomposites of natural rubber (NR) and unmodified clay were prepared by latex compounding method. Phenolic resin (PhOH) was used to crosslink NR. Crosslinked neat NR was also prepared for comparison. The structure–property relationship of uncrosslinked and crosslinked NR/clay nanocomposites was examined to verify the reinforcement mechanism. Microstructure of NR/clay nanocomposites was studied by using transmission electron microscopic (TEM), X‐ray diffraction (XRD), wide angle X‐ray diffraction (WAXD), and small angle X‐ray scattering (SAXS) analyses. The results showed the evidence of intercalated clay together with clay tactoids for the nanocomposite samples. The highest tensile strength was achieved for the crosslinked NR/clay nanocomposite. The onset strain of deformation induced the crystallization of NR for nanocomposites was found at almost the same strain, and furthermore their crystallization was developed at lower strain than that of the crosslinked neat NR because of the clay orientation and alignment. However, at high strain region, the collaborative crystallization process related to the clay dispersion and conventional crosslink points in the NR was responsible to considerably high tensile strength of the crosslinked NR/clay nanocomposite. Based on these analyses, a mechanistic model for the strain‐induced crystallization and orientational evolution of a network structure of PhOH‐crosslinked NR/clay nanocomposite was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42580.  相似文献   

7.
Ten types of rare earth (RE) compounds modified carbon black (HAF‐RE) were prepared using chemical‐deposit method, then HAF‐RE were mixed with natural rubber latex to prepare HAF‐RE filled powdered natural rubber [P(NR/HAF‐RE)] by a carbon black/rubber latex coagulation method. It is found that most of the P(NR/HAF‐RE) vulcanizates showed better mechanical properties, especially higher tensile modulus, and tensile strength, compared with none‐rare earth modified carbon black filled powdered natural rubber [P(NR/HAF)]. Dysprosium (Dy) modified carbon black (HAF‐Dy) filled powdered natural rubber [P(NR/HAF‐Dy)] was chosen for intensive investigation because of its better comprehensive mechanical properties. It is found that the adding of Dy compounds could help to get smaller particles with narrower particle size distribution, and results from the SEM analysis show that carbon black has been dispersed in rubber matrix uniformly with diameter of 50–150 nm. The TEM analysis showed that Dy compounds could obviously reduce the aggregation of primary particles of carbon black, and promote the dispersion of carbon black in P(NR/HAF‐Dy) particles. © 2008 Wiley Periodicals, Inc. JAppl Polym Sci 2008  相似文献   

8.
The nature of long‐chain branching in natural rubber (NR) from Hevea brasiliensis was analyzed for NR purified by enzymatic deproteinization in the latex state followed by acetone extraction in the solid state to remove the proteins and neutral lipids, respectively. The treatment of purified NR in a toluene solution with a polar solvent, such as methanol or acetic acid, resulted in a clear decrease in the molecular weight, gel content, and Huggins' constant; this was caused by the decomposition of branch points in the purified rubber. This finding clearly showed that long‐chain branching in the purified NR was mainly derived from the association of phospholipids linked with both terminal groups in the rubber chain via hydrogen bonds. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Natural rubber/polystyrene (NR/PS) blend films with weight ratios of 70/30, 60/40, and 50/50 were prepared using polystyrene grafted natural rubber copolymers (NR‐g‐PS) as the compatibilizer. Copolymers with molar ratios of 90/10, 80/20, and 70/30 were synthesized via emulsion copolymerization using tert‐butyl hydroperoxide/tetraethylene pentamine as an initiator. The copolymers were subsequently added into the blends at 0, 5, 10, 15, 20, 25, and 30 phr. The mixtures were cast into films by the solution‐casting method using toluene as the casting solvent. Mechanical and morphological properties of the prepared films were investigated. The film prepared from 80/20 NR‐g‐PS showed higher tensile and tear strength, as well as finer domain size of the dispersed phase, than those prepared from 90/10 and 70/30 NR‐g‐PS. However, the mechanical properties of the films were decreased at high loading of the copolymers. In addition, themogravimetric analysis revealed that weight loss was decreased upon introduction of the compatibilizer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 826–831, 2005  相似文献   

10.
Natural rubber (NR) composites with different contents of 1, 3, 10, and 20 wt% vapor‐grown carbon nanofibers (VGCFs) were synthesized using a solvent casting method. The initial modulus of composites was improved by 26.5 %/wt% as the VGCFs were added, and the NR/3 wt%VGCF composite had the largest tensile strength. The experiment values of initial moduli agreed well with the values predicted by the Halpin‐Tsai theory. The reinforcement mechanisms of the composites were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and wide‐angle X‐ray diffraction (WAXD). It was found that an efficient stress transfer occurred from NR to VGCFs under the uniaxial stretching. The addition of 10 wt% VGCFs could promote the nucleation process of NR, which resulted in the characteristic of the strain‐induced crystallization (SIC) in NR/10 wt%VGCF composite even for low strain. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
Carbon black (HAF) filled powdered natural rubber (P(NR/HAF)) was prepared and the particle size distribution, mechanical properties, and micromorphology of P(NR/HAF) were studied. A carbon black–rubber latex coagulation method was developed for preparing carbon black filled free‐flowing, noncontact staining NR powders with particle diameter less than 0.9 mm. A powdering mechanism model was put forward to describe the powdering process, which shows that the key technical points consist in the surfactant with good emulsification properties and the polymer coating resin with good film forming properties. SEM analysis shows that carbon black and rubber matrix have formed a macroscopic homogenization in the P(NR/HAF) particles without contact staining, and carbon black particles are well dispersed in rubber matrix with diameter of about 50–150 nm. P(NR/HAF) vulcanizate showed better mechanical properties than bale natural rubber/carbon black blends (NR/HAF) and simple NR latex/carbon black blends (NRL/HAF), which depends primarily upon the absence of free carbon black, the fine dispersion of filler on the rubber matrix, and the better interaction between carbon black and rubber matrix due to the proper preparation condition of noncontact staining carbon black filled powdered NR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1763–1774, 2006  相似文献   

12.
The maleated sulfur-prevulcanized natural rubber (M-SPNR) was prepared from grafting maleic anhydride (MA) onto SPNR latex particle by using benzoyl peroxide as an initiator. Natural rubber latex particle was vulcanized first, and then it was maleated to M-SPNR. The average particle size of M-SPNR was greater than that of SPNR possibly due to the formation of aggregate after addition of MA. The symmetric (strong) and asymmetric (weak) carbonyl stretching vibrations of succinic anhydride rings were confirmed by ATR–FTIR at 1,780–1,784 and 1,854?cm?1, respectively. The swelling ratios of M-SPNR latex film decreased with increasing MA contents. The tensile strength, modulus, hardness, and elongation at break of SPNR latex film dramatically increased after grafting with MA. Due to the reduction of double bond, the thermal stability of M-SPNR film was better than that of SPNR. The environmental friendly M-SPNR would be further applied as a compatibilizer between NR and biopolymer.  相似文献   

13.
黏土/天然橡胶纳米复合材料的制备及性能   总被引:13,自引:1,他引:13  
利用乳液插层法制备了黏土/天然橡胶纳米复合材料,研究了该复合材料的力学性能、应力应变行为、耐磨性、气体阻隔性和耐老化性能。结果表明,黏土/天然橡胶纳米复合材料与高耐磨炭黑(N330)、白炭黑增强橡胶相比,邵尔A型硬度、定伸应力和撕裂强度较高,拉伸强度相当。黏土、N330以及白炭黑对天然橡胶的拉伸结晶有影响,填料用量对材料拉伸强度的影响存在最佳值。黏土/天然橡胶纳米复合材料具有良好的耐磨性、气体阻隔性和耐老化性能。  相似文献   

14.
Using ultrafine calcium carbonate to reinforce natural rubber latex film, the effect of its content on latex properties such as surface tension, viscosity, mechanical stability, and heat stability and the physical properties of latex film before and after aging such as tear strength, modulus, and tensile strength were investigated. The results showed that the surface tension of natural rubber latex reinforced by ultrafine calcium carbonate only changed slightly; when the content of calcium carbonate was less than 20%, the change of viscosity was not obvious, but when the content was greater than 20%, the viscosity significantly lowered. Ultrafine calcium carbonate could effectively improve the tear strength, tensile strength, and modulus of the natural rubber latex film. The modulus increased with the increment of the calcium carbonate. When the content of calcium carbonate was less than 15%, the tear strength and tensile strength increased with the increments of calcium carbonate, but when the content was greater than 15%, the above‐mentioned properties decreased with the increment of calcium carbonate. By comprehensive consideration, the best reinforcing effect was obtained at a content of 15% ultrafine calcium carbonate. The particle diameters of calcium carbonate and their distribution in the calcium carbonate emulsion and in the rubber film were analyzed with SEM and a laser particle size tester, which showed that the distribution of calcium carbonate in the latex film was even and that it could effectively reinforce natural rubber latex film. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 982–985, 2003  相似文献   

15.
The aim of this study was to improve the mechanical properties of thermoplastic starch foams prepared from cassava starch blended with natural rubber latex by reactive blending. Potassium persulfate was used as an initiator for graft copolymerization between the starch and natural rubber during baking. The starch–natural rubber graft copolymer (starch‐g‐NR copolymer) was successfully produced during both suspension and melt blending based on 1H‐NMR and FTIR characterization. Natural rubber increased the flexural modulus of starch/natural rubber foams without potassium persulfate, thus indicating the compatibility of the blends. The starch‐g‐NR copolymer, acting as a compatibilizing agent, enhanced the impact strength of foams, but it did not improve the flexural modulus. This may be due to the potassium persulfate decreasing the molecular weight of the natural rubber. Relative humidity also played an important role on the mechanical properties. Foams became more ductile at higher relative humidities. Since foam density increased with an increasing natural rubber content, the specific impact strength was also considered. A soil burial test showed that the cassava starch foams and foams containing 15 pph of natural rubber were fully biodegraded within 8 and 18 weeks, respectively. The starch‐g‐NR copolymer delayed biodegradation of foams and foams containing high natural rubber content, i.e., 35 pph, showed a low ability to be biodegraded. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Natural rubber (NR)–clay (clay is montmorillonite) and chloroprene rubber (CR)–clay nanocomposites were prepared by co‐coagulating the rubber latex and clay aqueous suspension. Transmission electron microscopy showed that the layers of clay were dispersed in the NR matrix at a nano level, and the aspect ratio (width/thickness) of the platelet inclusions was reduced and clay layers aligned more orderly during the compounding operation on an open mill. However, X‐ray diffraction indicated that there were some nonexfoliated clay layers in the NR matrix. Stress–strain curves showed that the moduli of NR were significantly improved with the increase of the amount of clay. At the same time, the clay layers inhibited the crystallization of NR on stretch, especially clay content of more than 10 phr. Compared with the carbon‐black‐filled NR composites, NR–clay nanocomposites exhibited high hardness, high modulus, high tear strength, and excellent antiaging and gas barrier properties. Similar to NR–clay nanocomposites, CR–clay nanocomposites also exhibited high hardness, high modulus, and high tear strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 318–323, 2005  相似文献   

17.
Filler mixtures of defatted soy flour (DSF) and carbon black (CB) were used to reinforce natural rubber (NR) composites and their viscoelastic properties were investigated. DSF is an abundant and renewable commodity and has a lower material cost than CB. Aqueous dispersions of DSF and CB were first mixed and then blended with NR latex to form rubber composites using freeze‐drying and compression molding methods. A 40% co‐filler reinforced composite with a 1 : 1 DSF : CB ratio exhibited a 90‐fold increase in the rubber plateau modulus compared with unfilled NR, showing a significant reinforcement effect by the co‐filler. The effect, however, is lower than that observed in the carboxylated styrene–butadiene rubber composites reported earlier, indicating a significant effect from the rubber matrix. The co‐filler composites have elastic moduli between those of DSF and CB reinforced composites. Stress softening and recovery experiments indicated that the co‐filler composites with a higher CB content tend to have a better recovery behavior; however, this can not be simply explained from the recovery behaviors of the single filler (DFS and CB) composites. CB composites prepared by freeze‐drying show a strain‐induced reorganization of fillers. Strain sweep experiment data fit with the Kraus model indicates the co‐filler composites with a higher CB content are more elastic, which is consistent with the recovery experiments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Natural rubber (NR) containing graphene (GE) and graphene oxide (GO) were prepared by latex mixing. The in situ chemically reduction process in the latex was used to realize the conversion of GO to GE. A noticeable enhancement in tensile strength was achieved for both GO and GE filled NR systems, but GE has a better reinforcing effect than GO. The strain‐induced crystallization was evaluated by synchrotron wide‐angle X‐ray diffraction. Increased crystallinity and special strain amplification effects were observed with the addition of GE. The incorporation of GE produces a faster strain‐induced crystallization rate and a higher crystallinity compared to GO. The entanglement‐bound tube model was used to characterize the chain network structure of composites. It was found that the contribution of entanglement to the conformational constraint increases and the network molecular parameters changes with the addition of GE and GO, while GE has a more evident effect than GO. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Graphene oxide(GO) has recently attracted substantial interest as a possible reinforcing agent for next generation rubber composite materials. In this research, GO was incorporated in natural rubber(NR) composites through latex co-coagulation technique. The microstructures of GO/NR composites were characterized through a combination of transmission electron microscope, scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and Differential scanning calorimeter. The results showed that highly exfoliated GO sheets were finely dispersed into NR rubber matrix with strong interface interaction between GO and NR. The mechanical properties of the GO/NR composites were further evaluated. The results showed that the tensile strength, tear strength and modulus can be significantly improved at a content of less than 2 phr. Especially,GO exhibited specific reinforce mechanism in NR due to the stress-induced crystallization effects of NR. The stress transfer from the NR to the GO sheets and the hindrance of GO sheets to the stress-induced crystallization of NR were further displayed in stress–strain behavior of GO/NR composites. These enhanced properties were attributed to the high surface area of GO sheets and highly exfoliated microstructures of GO sheets in NR.  相似文献   

20.
《Ceramics International》2019,45(15):18543-18550
Eco-friendly and sustainable tape casting of alumina powder suspensions using concentrated natural rubber (poly isoprene) latex binder has been studied. The high negative zeta potential values of the aqueous alumina slurry (−53 to −72 mV) and rubber latex (−67 to −84 mV) at pH in the range of 9–11.5 enables their co-dispersion to produce tape casting slurries of solids (alumina + rubber) concentration >60 vol% with adequate flow characteristics. Drying of the slurry tape-cast on Mylar substrate is achieved within 15 min at 70 °C due to its high solid concentration. The green tapes containing 14.2 to 18.1 wt% of rubber shows tensile strength and strain at failure in the ranges of 1.85 to 1.61 and 41–254%, respectively. The flexible green tapes turn rigid by annealing at 200 °C due to the self-cross-linking of rubber chains induced by the Lewis acid sites of alumina. Thickness reduction to the extent of 20% by rolling of the green tape before annealing improves the green microstructure which results in an enhancement in sintered density from 93 to 98% of the theoretical value. However, the additional rolling and annealing steps consume extra time and energy compared to the tape casting processes using other reported binders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号