首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The skin‐core structure of the gas‐assisted and conventional injection molded polycarbonate (PC)/polyethylene (PE) blend was investigated. The results indicated that both the size and the shape of the dispersed PC phase depended not only on the nature of PC/PE blend and molding parameters, but also on its location in the parts. Although the gas‐assisted injection molding (GAIM) parts and conventional injection molding (CIM) part have the similar skin‐core structure, the morphology evolution of PC phase in the GAIM moldings and the CIM moldings showed completely different characteristics. In the section perpendicular to the melt flow direction, the morphology of the GAIM moldings included five layers, skin intermediate layer, subskin, core layer, core intermediate layer as well as gas channel intermediate layer, according to the degree of deformation. PC phase changed severely in the core layer of GAIM moldings, as well as in the subskin of CIM moldings. In GAIM parts, PC phase in the core layer of the nongate end changed far more intensely and aligned much orderly than that in the gate end. The morphology of PC phase in the GAIM part molded with higher gas pressure changed more severe than that in the GAIM part molded with lower gas pressure. In a word, PC phase showed more obvious fibrillation in the GAIM moldings than that in the CIM moldings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3069–3077, 2006  相似文献   

2.
以聚己内酯(PCL)为材料,采用实验方法,研究了成型温度和打印层高对PCL制品翘曲变形的影响。通过三维(3D)打印制备PCL样条,表征了3D打印PCL的力学性能,并与注射成型进行对比。结果表明,随着成型温度的升高和打印层高的增加,PCL制品的翘曲变形量呈现出先增加后减小的趋势;PCL 的3D打印制品的拉伸强度、弯曲强度和断裂伸长率均高于传统注射成型工艺。  相似文献   

3.
In the sandwich injection molding process (co‐injection), two different polymer melts are sequentially injected into a mold to form a part with a skin/core structure. Sandwich molding can be used for recycling, improving barrier and electrical properties, or producing parts with tailored mechanical properties. In this study the evaluation of flexural modulus and impact strength of co‐injected plaques have been investigated. Virgin and short glass fiber reinforced (10 and 40%) polypropylene were used in six different combinations of sandwiched layers. The skin and core thicknesses were measured by optical microscopy and used to calculate the theoretical flexural modulus, which was compared to the experimentally measured modulus. Fiber orientation states were also observed by scanning electronic microscopy (SEM) at some specific locations and their effect on mechanical properties discussed. The experimental results indicate that an important improvement in transverse modulus, near the gate, is obtained when the virgin polypropylene (PP) is used as a skin and 40% short glass fiber polypropylene (PP40) as core. When both skin and core are made of PP40, the flexural moduli are slightly higher than conventionally injected PP40. POLYM. COMPOS. 26:265–275, 2005. © 2005 Society of Plastics Engineers.  相似文献   

4.
In this article, gas penetration‐induced skin‐core structure of isotactic polypropylene(iPP), which is molded by gas‐assisted injection molding at different gas pressures, was investigated. For comparison, the counterpart was also molded by conventional injection molding (CIM) using the same processing parameters but without gas penetration. They were characterized via PLM, DSC, and SEM. And the crystal morphology at different gas pressures was principally concerned. For the GAIM parts, highly oriented structure is formed in the skin zone, and much less oriented structure in the inner zone (near the gas channel surface). Furthermore, it is suggested that the naked shish structure can be developed in the skin zone of GAIM part, which is molded at higher gas pressures, and shish‐kebab structure is mainly formed in the skin zone of that, which is molded at lower gas pressure. However, for the CIM part, from the skin to the core zone, the dominant morphological feature is spherulite. In a word, the presence of gas penetration notably enhances the oriented structure formation and gives rise to the skin‐core structure. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
To explore the dependence of the microstructure and properties of thermoplastic vulcanizates (TPVs) on the molding process. The polypropylene/bromo-isobutylene-isoprene rubber thermoplastic vulcanizates (PP/BIIR-TPVs) are molded by high rate shear injection and compression molding, and the phase morphology and physical-mechanical properties of PP/BIIR-TPVs specimens are investigated. Detailed small-angle X-ray scattering, scanning electron microscopy and atomic force microscopy investigations demonstrate that the high rate shear of injection molding not only decreases the size of BIIR particles but also induces the orientation of the PP matrix and further increases its crystallinity. Subsequently, the PP/BIIR-TPVs molded by injection molding have higher tensile strength and Young's modulus, while the compression molding benefits to higher elongation at break. The mechanism regarding the effects of high rate shear during injection molding on phase morphology development of PP/BIIR-TPVs is discussed. This study guides the preparation of TPVs products with desired properties.  相似文献   

6.
In this article, dynamic packing injection molding (DPIM) technology was used to prepare injection samples of Polypropylene‐Calcium Carbonate (PP/CaCO3) nanocomposites. Through DPIM, the mechanical properties of PP/nano‐CaCO3 samples were improved significantly. Compared with conventional injection molding (CIM), the enhancement of the tensile strength and impact strength of the samples molded by DPIM was 39 and 144%, respectively. In addition, the tensile strength and impact strength of the PP/nano‐CaCO3 composites molded by DPIM increase by 21 and 514%, respectively compared with those of pure PP through CIM. According to the SEM, WAXD, DSC measurement, it could be found that a much better dispersion of nano‐CaCO3 in samples was achieved by DPIM. Moreover, γcrystal is found in the shear layer of the DPIM samples. The crystallinity of PP matrix in DPIM sample increases by 22.76% compared with that of conventional sample. The improvement of mechanical properties of PP/nano‐CaCO3 composites prepared by DPIM attributes to the even distribution of nano‐CaCO3 particles and the morphology change of PP matrix under the influence of dynamic shear stress. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Blends of two grades of polypropylene (PP) with thermotropic copolyester (Rodrun) contents of up to 40% were obtained by direct injection molding at different processing temperatures. In the skin of the molded specimens rather long fibers were seen in blends with low‐viscosity PP, whereas sheets were found when the high‐viscosity PP was the matrix. In the core, the viscosity of the matrix played a more relevant role than the viscosity ratio on the orientation level of the dispersed Rodrun phase. The better mechanical properties of the blends with the low viscosity PP are attributed to the morphology change of the dispersed phase from sheets to fibers when the viscosity of the matrix decreased.  相似文献   

8.
The effect of molding parameters on material distribution and mechanical properties of co‐injection molded plates has been studied using experimental design. The plates were molded with a polyamide 6 (PA 6) as skin and a 20% glass fiber‐reinforced polybutyleneterephtalate (PBTP) as core. Five molding parameters—injection velocity, mold temperature, skin and core temperature, and core content—were varied in two levels. The statistical analysis of the results showed that three parameters—Injection velocity, core temperature, and core content—were the most significant in affecting skin/core distribution. A high core temperature was the most significant variable promoting a constant core thickness, while core content was the most significant factor influencing a breakthrough of the core. Mechanical properties, such as flexural and impact strength showed a high correlation with the skin/core distribution. The slight increase in falling weight impact strength of the sandwich molded plates, compared to similar plates molded from PBTP only, could be explained from the failure process, which initiates in the brittle core and propagates through the ductile skins.  相似文献   

9.
Wen Cao 《Polymer》2006,47(19):6857-6867
The evaluation of microstructure and crystal morphology in injected-molded bar becomes much complicated because of the existence of a shear gradient and a temperature gradient from the skin to the core of the samples. To understand the relationship between shear rate-molecular weight and oriented structure of injection molded bar, in this work, the hierarchy structure and the effect of molecular weight on the formation of shish-kebab structure were investigated by examining the lamellar structure of injection molded samples of high density polyethylene (HDPE) with different melt flow index (MFI), layer by layer, along the sample thickness. To enhance the shear effect, so-called dynamic packing injection molding (DPIM), in which the melt is firstly injected into the mold and then forced to move repeatedly in a chamber by two pistons that move reversibly with the same frequency as the solidification progressively occurs from the mold wall to the molding core part, was used to obtain the molded bar. Furthermore, a small amount of ultra-high molecular weight polyethylene (UHMWPE) was added into HDPE to explore the effect of UHMWPE on the crystal morphology and orientation. Our results indicated (1) that the overall orientation in the molded bar increased with decreased MFI, and a small amount of UHMWPE could enhance substantially HDPE orientation; (2) at the skin, there existed intertwined lamellae constituting an interlocked lamellar assembly, a typical shish-kebab structure gradually developed from the subskin-layer to the core, with increased shish content toward the center, but in the core was a spherulite-like superstructure with randomly distributed lamellae; (3) UHMWPE played an important role not only in the formation of shish, but also in the transformation from spherulite to shish-kebab oriented structure for HDPE with a low molecular weight (high MFI).  相似文献   

10.
Polypropylenes (PP) of various molecular weights were mixed with a thermotropic liquid crystal polymer (LCP) and strands were prepared by extrusion and stretching. The strands were subsequently pelletized and then injection molded at temperatures below the melting point of LCP. The mechanical properties and the morphology of the strands and injection‐molded specimens were investigated as a function of draw ratio, LCP concentration, and PP molecular weight. The results for strands show that an increase in the draw ratio, LCP concentration and matrix molecular weight in general enhance the modulus and tensile strength. However, the tensile properties of injection‐molded specimens are found to be reduced compared with those of the original strands, in particular at high LCP concentration. The morphology of LCP changes from spherical or ellipsoidal droplets to elongated fibrils in the strands as the draw ratio increases, but this aligned LCP fibrillar morphology was not transferred to the injection‐molded specimens because of the disorientation of fibrils during injection molding. Compatibilization of PP/LCP blends was also studied by using various polymers. Maleic anhydride and acrylic acid modified PPs improved the tensile properties modestly, but maleic anhydride modified EPDM reduced the tensile properties.  相似文献   

11.
The aim of this study was to improve mechanical properties of polypropylene/cycloolefin copolymer (PP/COC) blends by processing‐induced formation of long COC fibers. According to the available literature, the fibrous morphology in PP/COC blends was observed just once by coincidence. For this reason, we focused our attention on finding processing conditions yielding PP/COC fibrous morphology in a well‐defined, reproducible way. A number of PP/COC blends were prepared by both compression molding and injection molding (IM). Neat polymers were characterized by rheological measurements, whereas phase morphology of the resulting PP/COC blends was characterized by means of scanning electron microscopy (SEM). The longest COC fibers were achieved in the injection molded PP/COC blends with compositions 75/25 and 70/30 wt %. Elastic modulus and yield strength of all blends were measured as functions of the blend composition using an Instron tensile tester; statistically significant improvement of the yield strength due to fibrous morphology was proved. Moreover, two different models were applied in the analysis of mechanical properties: (i) the equivalent box model for isotropic blends and (ii) the Halpin‐Tsai model for long fiber composites. In all PP/COC blends prepared by IM, the COC fibers were oriented in the processing direction, as documented by SEM micrographs, and acted as a reinforcing component, as evidenced by stress–strain measurements. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
This study examines the viability of using additively manufactured injection molding tools for short run proof‐of‐concept plastic parts by assessing the quantity and quality of molded parts. Prototyping injection molded parts traditionally can be very expensive, but with improved additive manufacturing materials and techniques such costs could be reduced. To prove this, plastic tools were made by using PolyJet and Fused Deposition Modeling out of Digital ABS, FullCure 720, and ULTEM 1010 materials in this study. The test tools were then compared to the standard P20 metal tool by molding acetal, polycarbonate (PC), and polypropylene (PP) in each tool type. The molded parts were analyzed for processing effects on part shrink, physical, and mechanical properties. Testing concluded that parts molded with additively manufactured tools performed comparably to parts made on a P20 tool. However, the quantity of satisfactory parts molded in acetal and PC were consistent with the literature at 10–100 parts. Conversely, molding in PP suggested that processing with additive manufactured tools could exceed 250 parts. POLYM. ENG. SCI., 59:1911–1918, 2019. © 2019 Society of Plastics Engineers  相似文献   

13.
The effects of submicron core‐shell rubber (CSR) particles, nanoclay fillers, and molding parameters on the mechanical properties and cell structure of injection‐molded microcellular polyamide‐6 (PA6) composites were studied. The experimental results of PA6 nanocomposites with 5.0 and 7.5 wt% nanoclay loadings and of CSR‐modified PA6 composites with 0.5 and 3.1 wt% CSR loadings were compared to their neat resin counterparts. This study found that nanoclay was more efficient in promoting a smaller cell size, larger cell density, and higher tensile strength for microcellular injection molding parts. A higher nanoclay loading led to more brittle behavior for microcellular parts. It was found that a proper amount of CSR particles could be added to the microcellular injection‐molded PA6 to reduce the cell size, increase the cell density, and enhance the toughness of the molded part. However, CSR particles were less effective cell nucleation agents as compared to nanoclay for producing desirable cell structures, and a higher CSR loading was found to have diminishing effects on the process and on the properties of the parts. POLYM. ENG. SCI., 45:773–788, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Shish‐kebab, which is endowed with superior strength and modulus, provides the potential to fabricate self‐reinforced polymer products. However, the injection‐molded product usually exhibits a typical skin–core structure, and the shish‐kebab is only located in an extremely thin shear layer. Therefore, the controlling and tailoring of crystal structures in complex flow field to improve the mechanical properties of the injection‐molded sample are still a great challenge. Herein, for the first time, high‐density polyethylene sample with a novel macroscopic alternating skin–core structure is achieved using a melt multi‐injection molding technique. Results show that, with increasing the amount of melt injection, the layers of skin–core structure increase in the form of arithmetic progression, and therefore the tensile strength of the samples progressively increases due to an increase of shish‐kebab content. This study demonstrates a new approach to achieve multilayer homogeneous materials with excellent tensile strength via macroscopic structural design during the practical molding process.  相似文献   

15.
Low processing efficiency and fusion defects limit the application of ultra‐high molecular weight polyethylene (UHMWPE) in artificial joint implants. These problems result from the high melt viscosity of UHMWPE. Here, we use an eccentric rotor extruder (ERE) based on elongational flow to pretreat UHMWPE. Compression molded UHMWPE is obtained without and with ERE pretreatment (EP‐UHMWPE). The processing efficiency of EP‐UHMWPE is improved compared with direct compression molded UHMWPE. This is because the preheating time can be omitted during the molding process, and the residence time of UHMWPE in the extruder is less than 90 s. The mechanical properties and friction resistance of EP‐UHMWPE are significantly improved compared with those of direct compression molded UHMWPE. The yield strength increases from 21 MPa to 23 MPa, the tensile strength increases from 36 MPa to 46 MPa, the elongation at break increases from 610% to 700%, and the abrasion loss decreases from 1.73 mg/1000 r to 0.93 mg/1000 r when UHMWPE is subjected to ERE pretreatment. We attribute these improvements to the elongational flow enhancing the orientation and disentanglement of UHMWPE molecular chains, which in turn improves particle fusion. The molecular weight is well maintained when subjected to ERE pretreatment. UHMWPE components pretreated by ERE have good prospects in artificial joint implants. © 2019 Society of Chemical Industry  相似文献   

16.
A methodology to predict mechanical properties in injection molded parts has been developed. Knowledge of part properties before actual molding and testing will be of immense help to part and mold designers in modification of design. This methodology involved the application of connectionist learning systems, injection molding computer simulation, and experimental evaluation of mechanical properties, to relate the thermomechanical history of injection molded parts to the resulting part properties of injection molded parts are dependent upon their thermomechanical history which in turn is greatly influenced by the processing conditions and part geometry. As the relationships between engineering properties and thermomechanical history are complex and highly nonlinear, the methodology developed was based on a backpropagation neural network algorithm that provided the means for a nonparametric mapping between the part properties and thermomechanical history. The proposed methodology has been successfully applied to two geometries, plaque and box. This methodology provides designers with the ability to predict mechanical properties in injection molded parts when significant thermomechanical history can be obtained from injection molding simulation.  相似文献   

17.
A homoisotactic polypropylene (PP) was melt blended with 0–30 wt % of three kinds of polystyrene (PS) with melt flow indexes lower than, similar to, and higher than that of PP. The blends were injection molded at cylinder temperatures of 200–280°C, and the structure and properties of the injection moldings were studied. With PS blending, although the PP molding whitened, no surface defect such as layer peeling and pearl-like appearance occurred. The rigidity and dimensional accuracy of the molding improved without much deterioration in impact strength and heat resistance. At the same time the fluidity also improved. The injection moldings of PP/PS blends did not show clear skin/core structure under a polarizing microscope. The degrees of crystallinity and crystalline c-axis orientation decreased with PS blending. PS particles were the smallest when the ratio of the viscosity of the PS to that of PP at molding shear rate was slightly lower than unity. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1015–1027, 1997  相似文献   

18.
粉末浸渍长玻璃纤维增强聚丙烯的注塑   总被引:1,自引:0,他引:1  
周晓东  张翼等 《中国塑料》2001,15(10):47-50
采用粉末浸渍的方法制备连续玻璃纤维增强聚丙烯预浸料,经切割获得长纤维增强聚丙烯粒子,探索了材料的注塑工艺,研究了注塑后材料的力学性能及其影响因素。结果表明,粉末浸渍的长纤维增强聚丙烯经注塑后可获得力学性能的制品;随着预浸料切割长度的增长、纤维含量的增加,材料的力学性能提高;在基体聚丙烯中添加接枝极性基团的功能化聚丙烯,可改善体系的界面结合,提高材料的力学性能,但功能化聚丙烯的含量超过一定值后,材料的冲击强度有所下降;控制注塑时的模具温度,可以改变材料的一些力学性能。  相似文献   

19.
Co‐injection molding, also known as sandwich molding, is a process in which two or more polymers are laminated together in a mold cavity. Integrated ultrasonic sensors embedded into a mold insert of a co‐injection‐molding machine have been used for real‐time, nonintrusive, and nondestructive diagnosis of co‐injection‐molding processes. Diagnosis of core arrival, core flow speed, part solidification, part detachment from the mold, thickness of skin and core, and core length at the mold was demonstrated. It is found that core flow speed and peak cavity pressure monotonically increased and decreased with the core volume percentage, respectively. Thicknesses of the skin and core of the molded part were estimated using the presented ultrasonic technique during molding with an accuracy better than ±17%. In addition, the core length had correlation with core thickness, core flow speed, and peak cavity pressure. Among them, the core thickness measured by the ultrasonic technique had the better correlation. This technique enables process optimization, the maximum process efficiency, and in‐process quality assurance of the molded parts. POLYM. ENG. SCI., 47:1491–1500, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
The cross-section of products made with the microcellular injection molding process shows the skin layer and the core region where the formation of pores takes place. The cell size, cell density, and cell morphology were found to depend on pressure drop rate, viscosity, cell growth period, and cell coalescence. However, research on the actual mechanisms of the skin layer is rare.

Cell morphology and skin layer are of importance as a factor influencing the density and strength of microcellular injection molded parts. Especially, as size of the injection molded parts becomes large, the skin layer size changes, resulting in variation of the foaming rate. Therefore, there is the need to study factors that influence the formation of the skin layer and its thickness.

This research proposes a hypothesis on the mechanism of the skin layer formation in microcellular injection molding process and addresses factors influencing skin layer thickness. In addition, the experimental design method was utilized to identify the factors, and the variation in physical properties with skin layer thickness was reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号