首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer‐dispersed liquid crystal (PDLC) films were prepared by the ultraviolet‐light‐induced polymerization of photopolymerizable monomers in nematic liquid crystal/monomer/chiral dopant composites, and the effect of the chiral dopant on the electro‐optical properties of the PDLC films was studied. It was demonstrated that the addition of a small amount of the chiral dopant increased the driving voltage somewhat but decreased the turn‐off time significantly. Furthermore, the transmittance of ultraviolet, visible, and near‐infrared light of the off state of PDLC films showing light scattering increased with increasing content of the chiral dopant, and the optimum electro‐optical properties of the PDLC films were obtained when the content of the chiral dopant was not more than 2 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Polymer dispersed liquid crystal (PDLC) films were obtained by successive controlled living radical polymerizations: starting polystyrene (M1) was obtained by reversible addition‐fragmentation polymerization (RAFT), M1 was converted to P‐chloromethylated polystyrene (M2) which was grafted with polystyrene branches by atom transfer radical polymerization (ATRP) to yield RAFT‐initiating graft polymer containing trithiocarbonate moieties in the backbone (M3, RAFT‐active grafted polystyrene), and then PDLC films were prepared by photo‐induced RAFT copolymerization of methyl acrylate with M3 in the presence of a nematic liquid crystal. The electro‐optical properties of the films were investigated for the purpose to apply them to optical devices. Experimental results showed that preferable properties could be acquired by controlling the amount of M3 and the liquid crystal E7 in the polymer matrix of PDLC films. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

3.
Two types of photoinitiators were synthesized: (1) a α,ω‐telechelic oligomeric photoinitiator, by the reaction of poly(propylene glycol) diglycidylether (PPGDGE) and 2‐hydroxy‐2‐methyl‐1‐phenyl‐propan‐1‐one (Darocur 1173), and (2) a polymeric photoinitiator, by copolymerization of a monomer that had a liquid crystalline property, 4‐[ω‐(2‐methylpropenoyloxy)decanoxy]‐4′‐cyanobiphenyl, with a vinyl monomer that had a photosensitive group. For comparison, low‐molecular‐weight (low‐MW) photoinitiator (Darocur 1173) also was used. Attention was directed to the structural effect of the photoinitiators on the electro‐optical properties of polymer‐dispersed liquid crystal (PDLC) film in which the LC phase occupied a major volume (80 wt % of the composite film). For the preparation of PDLC films by the polymerization‐induced phase separation method, the optimum UV‐curing temperature was observed at 50°C, a temperature slightly higher than the cloud temperature (Tcloud) of the low‐MW LC/matrix‐forming material mixture. It was found that the electro‐optical performance of the PDLC cell fabricated with the oligomeric or polymeric photoinitiator was better than that of the PDLC cell made with a low‐MW photoinitiator (Darocur 1173), exhibiting lower driving voltage (V90) and higher contrast ratio under identical formulation conditions. Oligomeric photoinitiators allowed premature phase separation between the LC and matrix phases, resulting in relatively pure LC‐rich phases. For the polymeric photoinitiator, incorporation of mesogenic moieties into the photoinitiator resulted in not only a well‐defined LC/matrix morphology but also in low driving voltage (V90) because of reduced friction at the LC/matrix interfaces. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 162–169, 2006  相似文献   

4.
In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices.  相似文献   

5.
Polymer dispersed liquid crystal (PDLC) films were prepared by polymerization-induced phase separation method with nematic LC content as low as 40 wt%, and the electro-optical properties were carefully investigated. To accomplish this, the structure of multi-functional curable epoxy monomers with different composition feed ratios and the weight percentages of the two groups were examined in this study. The combined effects of heat-curable monomers’ structure on the conspicuous morphology of polymer network of PDLC films formed small holes and suitably distributed coin-like networks in both groups A and B, respectively. The detailed characteristics and morphology of polymer network of PDLC films were analyzed by employing liquid crystal device parameter tester, UV-Vis-NIR spectrophotometer and scanning electron microscope. Meanwhile, the enhanced curing temperature effects on the alkyl chain length, short flexible chain length, and rigid chain segment containing epoxy monomers structure on the increasing morphology of polymer network as well as electro-optical properties of PDLC films were also studied. It was found that the LC domain size of the polymer network could be regulated by adjusting the structure and composition ratio of curable epoxy monomers, and then the electro-optics of the PDLC films could be optimized, which is beneficial for decreasing the total LC content in PDLC devices.  相似文献   

6.
We prepared polymer-dispersed liquid crystal (PDLC) by using nematic liquid crystal 5CB and biphenyl methacrylate type monomer with alkoxy terminal group. Reverse mode properties were achieved by rubbing the glass substrates of the PDLC films in parallel directions so that polymer and liquid crystal molecules are plane-parallel aligned in the sample cell. The monomers with various carbon number (n ≤ 4) of alkoxy group were employed for the formation of the PDLC films. The films were cured by varying monomer concentration and UV curing time. The resulting liquid crystal/polymer composites showed significantly improved driving voltage and contrast ratio.  相似文献   

7.
Polymer dispersed liquid crystals (PDLCs) are often formed by polymer induced phase separation, based on photopolymerization of multifunctional acrylate monomers. The emerged morphology is controlled by the interplay between polymerization rate and phase separation dynamics, which depends on different parameters such as monomer structure and functionality. In this work, a new PDLC formulation containing urethane trimethacrylate (UTMA) monomer is introduced, which has different molecular weight evolution, polymer gel point, and polymerization kinetics in comparison with some common ester acrylate (such as TMPTA and DPHPA) based PDLC compositions. UTMA is synthesized and characterized by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopic techniques. Simultaneous examination of polymer evolution and LC phase separation by real‐time infrared spectroscopy shows that the UTMA based PDLC, which contains trifunctional urethane acrylate monomer, has greater amount of bond conversion, polymerization rate, and liquid crystal (LC) phase separation in comparison with TMPTA based PDLC. In spite of the acrylate monomers, which show gel point conversions as low as 1.83–5.72%, UTMA reaches to its maximum rate at 19.5% conversion, which causes higher phase separation and therefore greater LC domain size. The experimental results are explained more precisely by means of SEM and optical microscopy analyses. The results are confirmed by electro‐optics measurements. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
We investigated the effects of the different content ratios of 2‐ethylhexylacrylate (2‐EHA) and 2‐ethylhexylmethacrylate (2‐EHMA) on the relationships among the photopolymerization rate, morphology of liquid crystals (LCs) droplets, and electro‐optical properties of trifunctional urethane acrylate‐based polymer‐dispersed liquid crystal (PDLC) systems. Photo‐differential scanning calorimetry (DSC) analysis and resistivity measurement revealed that increasing 2‐EHMA content gradually decreased the photocure rate of trifunctional urethane acrylate‐based PDLCs, which prolonged the phase separation between the LC molecules and the prepolymers. Morphological observations and electro‐optical measurements demonstrated that trifunctional urethane acrylate‐based PDLCs with the 2‐EHA:2‐EHMA ratios from 4:1 to 3:2 in weight percent formed the favorable microstructures of LC droplets being within the range of 1–5 µm to scatter light efficiently and showed the satisfactory off‐state opacity and on‐state transmittance and the relatively low‐driving voltage. The microstructures of LC droplets and electro‐optical properties of trifunctional urethane acrylate‐based PDLCs could be usefully optimized by controlling the photocure rate using the different 2‐EHA/2‐EHMA content ratios. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3098–3104, 2013  相似文献   

9.
Polymer‐dispersed liquid crystal (PDLC) films were synthesized by the copolymerization of liquid crystalline polymer (LCP) precursor, urethane acrylate (UA), and mesogenic monomer (AI) at different conditions. The morphology of polymer matrix changed with the weight ratio of polymer/liquid crystal (LC) ratio and curing temperature, resulting in a large change in the droplet size of LC domains in the PDLC film. The components used in the synthesis of polymer matrix, that is, the weight ratio of LCP, AI, and UA, also strongly influenced the morphology of PDLC films. A small amount of LCP was copolymerized with UA and AI in the preparation of polymer matrix to improve the electrooptical properties such as the viewing angle. Added LCP also affected the morphology and the properties of PDLC. The hydrophobicity of LCP caused changes in the droplet size of LC domain in PDLC films and the anchoring energy between matrix polymer and LC droplets. As the hydrophobicity of the matrix increases, the droplet size of LC domain also increases; on the contrary, anchoring energy decreased, leading to the decrease of driving voltage. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3178–3188, 2000  相似文献   

10.
Polymer dispersed liquid crystal (PDLC) films are fabricated using E7 liquid crystals, tetraethylene glycol diacrylate (TeGDA) crosslinking agent, and 0–66.49 mol % 2‐hydroxy ethyl methacrylate (HEMA). The effects of different levels of HEMA addition on the microstructure and electro‐optical properties of the PDLC samples are examined using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV‐Vis spectroscopy, respectively. The results show that the refractive index of the PDLC films is insensitive to the level of HEMA addition. However, an increasing HEMA content improves the degree of phase separation during the polymerization process and increases the size and uniformity of the liquid crystal domain. As a result, the electro‐optical properties of the PDLC films are significantly improved as the level of HEMA addition is increased. Overall, the results show that a PDLC comprising 40 wt % E7 liquid crystals, 33.51 mol % TeGDA and 66.49 mol % HEMA has a high contrast ratio (13 : 1) and a low driving voltage (10 V) and is therefore an ideal candidate for a wide variety of intelligent photoelectric applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
This article deals with the study of polymer‐dispersed liquid crystal (PDLC) films that consisted of microdroplets of liquid crystals (LCs) dispersed in a polymer matrix. The PDLC films were fabricated by the photoinduced phase separation method under room‐temperature conditions. To determine the extent of the effects of the molecular structures and their physical properties of different mixtures of monomers and LCs on the morphology and electrooptical properties of the PDLC films, various mixtures were used. A detailed discussion of the obtained results is given. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
High-dielectric constant (high-K) polymer nanocomposites based on nematic liquid crystals and CaCu3Ti4O12 (CCTO) nanoparticles have been prepared. The host matrix is polymer dispersed liquid crystals (PDLC) in which LC (E7) droplets are dispersed in different polymer blends ratios of poly vinyl chloride/poly aniline (PVC/PANI). The PDLC (PVC/PANI/E7) in the appropriated ratios; (90/10/5), (75/25/5), and (50/50/5) were composited with 10 wt% CCTO nanoparticles. The IR spectra recorded for the PDLC nanocomposites present a spectrum similar to that of pure PDLC but with a slight shift of the peak positions. The addition of PANI and CCTO to PDLC enhances the thermal stability of the nanocomposites. SEM demonstrates agglomerates of CCTO dispersed in the polymer textures. Moreover, the addition of E7 facilitates the integration of PANI in PDLC matrix. The broadband dielectric spectrum shows high-frequency relaxation in addition to low-frequency interfacial polarization (Maxwell-Wagner type polarization). Besides, ε′ at 50 Hz is in the order of 105 for PDLC/CCTO (50/50/5/10) nanocomposite. In addition, the computed energy density is found to be 74.66 J/cm3. This presumed ratio could be accentuated as a potential candidate for energy storage application with respect to the considerations of device fabrications.  相似文献   

13.
A series of azobenzene monomers and related model compounds with various side‐chain lengths were synthesized. The electrooptical properties of a polymer‐dispersed liquid crystal (PDLC) were verified by side‐chain methoxy azobenzene in various chain lengths (n = 3, 6, 11). The properties under various voltages were measured and the effect of extra voltage on the transmittance of PDLC was researched as well. The experiment demonstrated the validity of employing these side chain methoxy azobenzene materials in electrooptical devices. The azobenzene model compound showed better electric–optical and thermal–optical properties, having a higher contrast ratio (CR = 689) and a lower saturation voltage (4.7 V/μm). All the azobenzene molecules can be photoisomerized through UV light irradiation, following the mechanism of isomerization. The reversible photo and heat isomerization property was studied. The cis‐azobenzene that was transformed from the trans‐azobenzene irradiated by UV light can decrease the clearing point of the liquid crystal phase. We used this unique characteristic to record image patterns and it worked successfully. We synthesized the azobenzene monomers can stabilize the PDLC and their relative model compounds with various alkyl chain lengths even got better electric–optical effects. We found that azobenzene monomer shows different behaviors in the electric–optical property from its relative model compound. The difference between the systems were explained using a proposed model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 721–732, 2005  相似文献   

14.
Two kinds of monomers, 1,3‐bis[4‐(4′‐amino‐Phenoxy)cumyl]benzene (BACB) and pyromellitic dianhydride were used to synthesize the Liquid Crystalline Polyamic acid—a precursor (LCPAA) of Liquid Crystalline Polyimide (LCPi). The nanohybrid films were successfully prepared by the sol–gel reaction. Tetraethoxysilane (TEOS) (99%)–ethanol (99.8%) solution was added to LCPAA solution. The hybrid films were made by the hydrolysis–polycondensation of TEOS–ethanol in the LCPAA solution. When water and the solvent were removed completely, the hybrid films were obtained. The functional group and chemical structure were characterized by FTIR. We employed a number of instruments to understand whether the nano‐SiO2 particle was introduced into the polymer matrix and enhanced the thermal properties and mechanical strength. The liquid crystalline phase of the LCPi and LCPi/SiO2 hybrid films was observed by POM. TGA and DSC were used to test the thermal properties. The crystallization and liquid crystal phase analyses were carried out by XRD. The elemental analysis was employed to measure the 1,3‐bis[4‐(4′‐nitrophenoxy)cumyl)]benzene and BACB monomers. Besides, the cross section at morphology of the materials was observed with an FESEM. The electrical properties of hybrid films were measured by the high resistance analysis and dielectric constant analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1688–1704, 2006  相似文献   

15.
Optical devices based on polymer-dispersed liquid crystal (PDLC) thin films derive their functional properties from the electric-field-induced reorientation of (sub)micrometer-sized polymer-dispersed liquid crystal (LC) droplets. In these materials, the LC reorientation dynamics are strongly dependent on droplet size and shape, as well as polymer/LC interfacial interactions. The dynamics also vary spatially within individual droplets. This Account describes studies of individual PDLC droplets and their field-induced dynamics by high-resolution near-field scanning optical microscopy (NSOM) and multiphoton-excited fluorescence microscopy (MPEFM). Included are studies of native ("pure") PDLCs and those doped with ionic compounds and dyes; the latter are used in sophisticated photorefractive materials.  相似文献   

16.
The polymer dispersed chiral liquid crystals (PDCLCs) film was fabricated by photopolymerization induced phase separation (PIPS) of chiral liquid crystal (CLC)/polymerizable monomers/photoinitiator composites. The effects of the electrical and thermal modulation on optical rotation properties of PDCLCs film were investigated. The microsized liquid crystal droplets were resulted from the rapid polymerization of trifunctional monomers. The effects of the electrically and thermally modulated on realignment of liquid crystal director were investigated. It was found that the intensity of electric and thermal field influenced the alignment of liquid crystal droplets' director on PDCLCs film, and the electro‐optical properties of the composites were affected accordingly. The principle of free energy minimum was used for explaining the change of optical rotation and transmittance of PDCLCs film with applying the voltage to the film. The dispersion and sizes of liquid crystal droplets were described by polarizing optical microscope (POM). POLYM. COMPOS., 31:1535–1540, 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
Low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), polypropylene (PP), and polyvinyl chloride (PVC) (1:1:1:0.5) were solution blended by using a mixture of solvents consisting of xylene and tetrahydrofuran (THF) (70:30). SiO2 nanoparticles were modified by cetyl trimethyl ammonium bromide (CTAB). Wood polymer composites (WPC) were prepared by using polymer mixture, polyethylene‐co‐glycidyl methacrylate (PE‐co‐GMA), wood flour, and modified SiO2. X‐ray diffraction (XRD) studies showed that the intensity of the peaks of polymer mixture decreased due to incorporation of SiO2. The dispersion of SiO2 nanoparticles and morphological characteristics were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The interaction between SiO2 nanoparticles, PE‐co‐GMA, polymer mixture, and wood was studied by Fourier transform infrared spectroscopy (FTIR). Tensile and flexural properties of the composites improved significantly due to the incorporation of SiO2 nanoparticles. Thermal stability, hardness, flame retardancy, and water resistance capacity were also found to enhance. Maximum improvement in properties was observed by the inclusion of 3 phr modified SiO2 in WPC. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
Living graft macromolecule has been prepared through reversible addition‐fragmentation chain transfer (RAFT) living radical polymerization in one step. Then, it was used to make polymer‐dispersed liquid crystal (PDLC) by controlling the mole ratio of styrene (St) to 1,6‐hexanediol diacrylate (HDDA) and adjusting the content of prepared graft macromolecule. The results showed that electro‐optical properties of PDLC have been optimized. Different concentration of living graft macromolecule and different mole ratio of St/HDDA led to substantial improvement of driving voltage (threshold voltage and saturation voltage) and memory effect of PDLC simultaneously. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
High performance polymers exhibiting multifunctional characteristics can be achieved by the introduction of inorganic nanoparticles like SiO2 into the functional polymers. In the present work a copolymer epoxy poly(dimethylacrylamide) was synthesized to disperse the SiO2 nanoparticles. The aim of the work is to develop a new method/process/material for the dispersion of nanoparticles and evaluating the performance of these composites. FT‐IR studies of the polymer adsorbed SiO2 nanoparticles confirmed that the polymer molecules chain was anchored on the surface of the SiO2 nanoparticles. The improved interfacial interaction between the particles and polymer enhanced the thermal properties of the composites. The results also show the newly synthesized polymer disperse the nanoparticles well as evidenced by SEM analysis, the uniformly dispersed SiO2 nanoparticles in the polymer matrix and the particles almost remained in their original shape and size even after incorporation in to the polymer matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The liquid crystal display (LCD) technology is confronted with the task to substitute rigid glass plates enclosing the electro‐optically active liquid crystal (LC) material by plastic substrates. In particular, the commercialization of flexible displays requires a sufficient stabilization against external mechanical distortions. To achieve LC layer stabilization, several procedures have been suggested. In this work, the thermal‐induced phase separation (TIPS) technique has been applied to generate composite films consisting of LC compartments which are encased by coherent polymer walls after binodal phase separation. Composite films were prepared from a series of poly(methacrylates) and various commercial nematic LC mixtures. Furthermore, the use of copolymers as well as binary blends from “hard” and “soft” poly(methacrylates) broadens the possibilities to control the film morphology. To compare different polymer/LC composite films regarding their stability under compression load, the samples were investigated by indentation tests using an inverse reflected‐light microscope combined with a digital image acquisition technique. The deformation of the composite layers was evaluated by the uniDAC image analysis which relies on the more general method of Digital Image Correlation (DIC). Some of the fabricated composites show a remarkably high indentation resistance, especially such prepared from poly(1‐tetralyl methacrylate) and poly(4‐tert‐butylcyclohexyl methacrylate). The results facilitate the selection of suitable composite systems for the fabrication of mechanically stabilized flexible LC displays. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号