首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

2.
Flexible layer–layer poly(ethylene phthalate) (PET)/BaTiO3 composite films with enhanced dielectric permittivity were fabricated by spin coating method, consisting of PET substrate film layer and modified BaTiO3/acrylic resin hybrid coating layer. The thickness of coating layer was less than 3 μm (about 2% of PET film thickness), and therefore, the PET/barium titanate (BT) composite films remained flexible even at high volume fraction of BaTiO3 fillers. The volume contents of BaTiO3 were varied from 0 to 80%, and the solid contents of BaTiO3/acrylic resin were in the range of 51.8–72.9%. Scanning electron microscopy showed strong interaction of finely dispersed BaTiO3 particles with acrylic resin. Morphological profile also displayed uniform coating layer of modified BaTiO3/acrylic resin and its strong adhesion with PET film. The dielectric constant of the PET/BaTiO3 composite films increased by about 26% at 60 vol % BaTiO3 loading when compared with the pristine PET film, whereas the dielectric loss decreased slightly. In addition, PET‐grafted poly(hydroxylethyl methacrylate) brushes were used as substrate to introduce covalent bonding with the coating layer. Further enhancement of dielectric constant and reduction of dielectric loss were realized when compared with the composite films with bare PET substrate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42508.  相似文献   

3.
Monodispersed raspberry‐shaped polystyrene‐butadiene‐methyl acrylate‐acrylic acid particles were made by semi‐batch emulsion polymerization followed by alkali and heat treatment. The particle sizes and size distributions were studied by hydrodynamic chromatography and transmission electronic microscopy. The morphology of the particles was observed by SEM, cryo‐SEM, and TEM. Treatment temperature was found to have a significant impact on the particle size and morphology of the treated latexes. Higher temperatures lead to larger particle sizes and more discernible raspberry domains with sizes around 50 nm on the particle surfaces. Higher levels of alkali did not significantly change the particle size but did increase the total titratable acid amount, presumably due to the hydrolysis of methyl acrylate during the treatment. GPC results showed that higher amount of oligomers or polymers are produced in the serum for the heat‐treated latexes. Divinylbenzene crosslinking agent at the levels of 0.05–3% limited the particle expansion and decreased the serum acid. A possible mechanism of raspberry particle formations was proposed, which involves migration of hydrophilic and hydrophobic species during the heat treatment. Lastly, potential applications for raspberry particles in paper coating were explored. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Barium sulfate nanocrystals of average 40 nm sizes were prepared by the micellar solution spray process. The influences of atomized impingement flow on nanoparticle formation and stabilization were inspected on the basis of Fourier transform infrared (FTIR), X‐ray diffraction, and transmission electron microscopy analysis. Poly(styrene–butylacrylate–acrylic acid) (PSBA) nanocomposites were synthesized by in situ copolymerization in the presence of 0.5–2.5% BaSO4 nanoparticles. FTIR and atomic force microscopy analysis confirmed the uniform dispersion of 2% or less nano‐BaSO4 within the PSBA matrix. The strength of interfacial adhesion between the nanoparticle and copolymer was examined on the basis of hydroscopicity, differential scanning calorimetry, thermogravimetric analysis, and universal testing machine analysis of nanocomposite film. The glass transition and thermal decomposition temperatures of PSBA latex were shifted toward higher temperatures by the restriction of nano‐BaSO4 on its segmental and long‐range chain mobility. The well‐dispersed nano‐BaSO4, with a larger fraction of immobilized copolymer on the pigment surface, improves the scratch and abrasion resistance, decreases the water uptake, and increases the tensile strength and elongation at break of the latex film within the specific loading. Thus, fabricating the PSBA/BaSO4 nanocomposite presents an effective approach for development of latex coatings with enhanced performance. POLYM. COMPOS., 34:1670–1681, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
Homopolymers and copolymers of styrene and different acrylic esters (i.e., acrylates) were synthesized by the free‐radical solution polymerization technique. Feed ratios of the monomers styrene and cyclohexyl acrylate/benzyl acrylate were 90 : 10, 75 : 25, 60 : 40, 50 : 50, 40 : 60 and 20 : 80 (v/v) in the synthesis of copolymers. All 6 homopolymerizations of acrylic ester synthesis were carried out in N,N(dimethyl formamide) except for the synthesis of poly(cyclohexyl acrylate) (PCA), where the medium was 1,4‐dioxane. Benzoyl peroxide (BPO) and azobisisobutyronitrile (AIBN) were used as initiators. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and viscosity measurements. The reactivity ratios were determined by the Fineman–Ross method using 1H‐NMR spectroscopic data. The reactivity ratios (r) for the copolymerization of styrene (rS) with cyclohexyl acrylate (rCA) were found to be rS = 0.930 and rCA = 0.771, while for the copolymerization of styrene with benzyl acrylate, the ratios were found to be rS = 0.755 and rBA = 0.104, respectively. The activation energies of decomposition (Ea) and glass‐transition temperature (Tg) for various homo‐ and copolymers were evaluated using TGA and DSC analysis. The activation parameters of the viscous flow, voluminosity (VE) and shape factor (ν) were also computed for all systems using viscosity data. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1513–1524, 2001  相似文献   

6.
硅丙乳液膨胀型防火涂料   总被引:3,自引:0,他引:3  
周友华  吴自强 《中国涂料》2006,21(1):22-24,45
叙述了硅丙乳液膨胀型防火涂料研制过程中的材料选择、工艺设计及配方优化,对该涂料的理化性能、技术指标等进行了全面讨论。  相似文献   

7.
Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with poly(ethylene‐co‐acrylic acid) (PE‐co‐AA) or poly(acrylamide‐co‐acrylic acid) (PAA‐co‐AA) polymers, in order to improve the properties of dissolved cellulose and to prepare homogeneous cellulose‐based blends for films and coatings. The solution stage properties of the blends were evaluated by rheological methods and the precipitated dry blends were characterized by dynamic mechanical analysis, differential scanning calorimetry, and scanning electron microscopy. Paperboard coating tests done at laboratory scale showed dissolved cellulose/acrylic acid copolymer‐based blends function well as coating materials. All of the tested blends showed a good resistance against grease in the coating trials, having grease resistance from 60 to 69 days despite a very thin (~2 µm) coating layer. In addition, cellulose/PE‐co‐AA coating showed improved water vapor and oxygen barrier properties when compared with neat dissolved cellulose‐coated paperboard. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40286.  相似文献   

8.
A key problem in latex adhesion is explaining and predicting how solid latex particles of various materials and different sizes can coalesce to form a paint film or adhesive coating. This problem is addressed by studying how individual latex particles come together during coalescence. It is demonstrated that two elastic latex spheres can be deformed sufficiently by adhesion forces at their contact points to produce a large area of connection between them. A quantitative theory of this process is presented and verified by experiments using rubber spheres ranging from macroscopic balls 150 mm in diameter to latex particles 0.15 μm in size. Observations of the contacts between the spheres fitted the predictions of the model, and allowed the theory to be extended to the problem of making non-porous latex coatings.  相似文献   

9.
In this study, poly(styrene–maleic anhydride) functionalized graphene oxide (SMAFG) was fabricated with in situ polymerization. The sample was characterized with Raman spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and ultraviolet–visible absorption. The results of the experiments show that the thermal stability of SMAFG was improved significantly, and it also possessed a good dispersion in N,N‐dimethylformamide, N,N‐dimethylacetamide, aniline, and certain organic solvents. The calculated Hildebrand parameter of SMAFG was 23.8 MPa1/2. This new method will broaden the applications of graphene, and the experiment showed that it could effectively improve the strength of polyamide 6 (PA6) compared with the pure PA6 fiber. The tensile strength of the SMAFG/PA6 composite fiber improved 29%, and the Young's modulus improved 33%, so this kind of functionalized graphene oxide can be used in the preparation of polymeric composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41987.  相似文献   

10.
Styrene–butadiene–styrene (SBS) was grafted with dibutyl maleate (DBM), methacrylic acid (MAA), or maleic anhydride (MAH) by 60Co γ‐rays. The grafted SBS was blended with polyamide 6 (PA6). The compatibility of the PA6/SBS blends was studied with scanning electron microscopy and rheological measurements. The results showed significant improvement in the compatibility of PA6 blended with MAH‐ or MAA‐grafted SBS, with the former being more effective, whereas grafting DBM was ineffective in this respect. Mechanisms of the compatibility enhancement and ineffectiveness are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Acrylic pressure–sensitive adhesives (PSAs) were synthesized by solution polymerization using zirconium carboxyethyl acrylate (ZrCEA) with methyl aziridine derivatives (MAZ) as a curing agent. The acrylic PSAs were characterized by Fourier transform-infrared spectroscopy and gel contents. The viscoelastic properties of the acrylic PSAs were determined using an advanced rheometric expansion system. The adhesion performance of the acrylic PSAs was determined by measuring the probe tack, peel strength, shear adhesion failure temperature, and holding power. The optical properties of the acrylic PSAs were evaluated by the transmittance and refractive index. The results show that the adhesion performance and optical properties of the acrylic PSAs are influenced by the ZrCEA and MAZ content.  相似文献   

12.
New functionalized styrene–maleimide copolymers were prepared by free radical copolymerization of styrene (St) and N‐4‐carboxybutylmaleimide (NBMI) in chloroform, using 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monomer and copolymer characterization was carried out by 1H‐ and 13C‐NMR. Copolymer composition was determined by elemental analysis and Fourier‐transform infrared (FTIR) spectroscopy. The glass transition temperature (from DSC) and the thermogravimetric analysis (TGA) of the copolymers were consistent with the thermal behavior and stability observed for alternating St–maleimide copolymers. St–NBMI copolymers crosslinked with divinylbenzene (DVB) were also synthesized and their cation exchange properties evaluated in order to assess the capacity of the new copolymers to bind metallic ions. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
Halloysite nanotubes (HNTs) were grafted with poly(styrene–butyl acrylate–acrylic acid) (P‐SBA) via an in situ soap‐free emulsion polymerization. To introduce double bonds into the HNTs, N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane was first used to modify the HNTs and render amino groups, and then, the double bonds were anchored through an amidation reaction between acryloyl chloride and amino groups. P‐SBA chains were grafted onto HNTs because of participating of double bonds in the copolymerization of styrene, butyl acrylate, and acrylic acid. Fourier transforms infrared spectroscopy, transmission electron microscopy, specific surface area measurements, and thermogravimetric analysis were used to characterize the HNTs grafted with P‐SBA. The results indicate that 25.21% of P‐SBA was grafted onto the outer walls of the HNTs and filled into the inner spaces of the HNTs. The modification dramatically decreased the surface area of the HNTs. The property study of the HNTs grafted with P‐SBA focused on the dispersion behavior in the biphase system. The results show that the grafted HNTs dispersed stably in the water/cyclohexane biphase system and were a potential emulsifier. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Nanoscale azo pigment yellow 13 (PY13) was coated by poly(styrene–maleic acid) (PSMA) with a free‐radical precipitation polymerization, followed by the preparation of the dispersion. The effects of the PSMA structure on the particle size and centrifugal stability were investigated. The experimental results revealed that the particle size was large, and the stability of the PY13/PSMA dispersions was high when the molar ratio of the feeding maleic acid to styrene, the weight ratio of the feeding initiator to monomer, and the weight ratio of the feeding monomer to pigment were about 1.0, 0.6, and 20%, respectively. Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopy indicated that PY13 was coated by PSMA. The PY13/PSMA dispersion was stable in the pH range 5.6–10.5. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A blend of bisphenol A polycarbonate (PC) and an acrylonitrile–styrene–acrylic elastomer (ASA) terpolymer with high surface gloss and excellent interfacial properties was developed for automobile applications. Because PC and the styrene‐co‐acrylonitrile (SAN) copolymer that formed the matrix in the PC/ASA blend were not miscible, two different types of compatibilizers were examined to improve the compatibility of the blend. A diblock copolymer composed of tetramethyl polycarbonate and poly(methyl methacrylate) (PMMA) was more effective than PMMA in increasing interfacial adhesion between PC and SAN. The surface gloss of the PC/ASA blend was always lower than that of the pure ASA included in the blend because of PC existing at the surface of the injection‐molding specimen. The PC/ASA blend with optimum surface gloss and enhanced interfacial adhesion was developed through the control of the molecular weight of PC and the compatibilizer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2097–2104, 2005  相似文献   

16.
This paper gives the results of the estimated coagulum content in the final sample of a dispersion based on styrene–butylacrylate–acrylic acid, prepared by semicontinuous emulsion polymerization. The results were gained from experiments on 25 L and 5 m3 reactors. The dependence of the amount of coagulum on the agitation intensity was studied. It was found that it is necessary to divide the results into two regions: (a) for specific power input smaller than 80 W/m3; (b) for specific power input greater than 80 W/m3. It was found that polymerization scaling up from the point of constant coagulum content in the system studied is possible under the conditions of constant specific power input. The specific power input varied in the range from 5 to 3000 W/m2. For the first region was gained the empiric correlation Y = 2.16(?V)?1 and for the second region the equation Y = 3.5 × 10?5(?V)1.5, where Y is the amount of coagulum (wt %). For the existence of two regions we propose the following hypothesis according to which increasing mixing intensity improves the temperature and concentration nonuniformity which results in the decrease of coagulum content. From the certain value of specific power input, which is specific for each system, the amount of coagulum starts to increase due to increasing shear stress.  相似文献   

17.
The effect of methyl acrylate content in ethylene–methyl acrylate–acrylic acid (E–MA–AA) terpolymers and acrylic acid content in ethylene–acrylic acid (E–AA) copolymers was investigated in blends of these two materials. The E–MA–AA terpolymer with 8 mol % methyl acrylate was not miscible with any E–AA material no matter what the AA content, whereas the terpolymer with only about 2 mol % methyl acrylate was miscible, at least to some extent, with the E–AA copolymer at high acrylic acid contents. Evidence supporting this conclusion derived from gloss, differential scanning calorimetry testing, and dynamic mechanical measurements. For the E–AA polymer material with the highest acid content, there was a synergistic effect for some properties at low added amounts of E–MA–AA copolymer; the tensile strength and hardness were 10% higher than values for the E–AA copolymer, even though the E–AA copolymer was much stiffer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2216–2222, 2004  相似文献   

18.
The monomer 2‐acrylamido‐2‐methyl‐1‐(5‐methylhydantoinyl)propane (HA) was copolymerized with 3‐(trimethoxysilyl)propyl methacrylate (SL) and covalently attached onto silica gel and sand particles. As a result HASL copolymer‐grafted silica gel and sand particles (HASL SGPs and SPs) were obtained. These two types of HASL SGPs and SPs provided excellent biocidal efficacy against Gram positive S. aureus and Gram negative E. coli O157:H7 bacteria when the copolymer‐grafted particles were exposed to dilute sodium hypochlorite (household bleach) solution. In a flowing water application, seven logs of bacteria were inactivated within 10 s of contact time with the particles packed into a column. The treated particles also exhibited good washing and storage stabilities. The chlorine loss during extensive flow could be recovered by further exposure to dilute bleach solution. The antimicrobial particles have potential application for use in inexpensive disinfecting water filters for slow water flows. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43413.  相似文献   

19.
Multicomponent diffusion of solvents in polymeric systems is not completely understood, despite many scientific contributions to the topic. Literature scarcely offers measurement data on diffusion for model validation in such systems. In this work, the ternary systems consisting of poly(vinyl acetate) and the solvents toluene and methanol was investigated experimentally and numerically. By means of inverse micro Raman spectroscopy (IMRS) concentration gradients in drying thin films have been measured. Initial composition of the samples has been varied systematically in order to detect mutual influence of the solvents' diffusive behavior. It was shown that the mobility of the different species is increased in the presence of other solvents as predicted by theory. This experimental data is provided for model validation. A new expression to calculate the diffusion coefficients in ternary mixtures is proposed which only requires binary data. This expression is tested by means of a model‐based simulation to predict the drying of ternary polymer solutions in terms of concentration profiles and residual solvent content. The results are in very good agreement with the experiments. Cross terms diffusion coefficients and thermodynamic factors were not found to be necessary for a satisfying prediction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43899.  相似文献   

20.
A type of water dispersible graphene (PG) has been synthesized by nucleophilic ring‐opening reaction of the primary amine group in 3‐(1‐(2‐aminopropoxy) propan‐2‐ylamino) propane‐1‐sulfonate sodium (PPS) with epoxy groups on the basal plane of graphene oxide (GO), followed by in situ reduction with hydrazine hydrate. The PG is employed as nanoscale reinforcement fillers in waterborne acrylic modified alkyd resin (AMAR) coatings. The stability and corrosion resistance of the waterborne PG/AMAR nanocomposite coatings are investigated. SEM and stability of nanocomposite indicated that the PG sheet is uniformly distributed in AMAR nano‐emulsion. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the PG/AMAR composite coatings exhibit higher corrosion resistance in simulated body fluid (SBF) compared with pure AMAR coatings and GO/AMAR coatings. In addition, the stability and corrosion resistance of the composite materials reach optimum when the PG content is 1%. PPS functionalized graphene (PG) displays prospective application in anticorrosion field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44445.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号