首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The reaction between a biomass (cellulose, sucrose, glucose, starch, cotton, or Japanese paper) and NaOH in the presence of water vapor produced pure hydrogen without CO and CO2 at temperatures in the range 473–623K. The addition of Ni/Al2O3 or Rh/Al2O3 catalyst to cellulose enhanced the production of hydrogen at <573 K. The reaction between cellulose and NaOH can be written as: C6H10O5 + 12NaOH + H2O = 6Na2CO3 + 12H2. The reactivities of alkali metal hydroxides were: KOH > NaOH ? LiOH. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
To develop a mild, effective, and clean strategy for recovery and recycling of anionic surfactants in CO2/N2‐switchable emulsions, a CO2/N2‐switchable anionic surfactant, which is a combination of dodecyl seleninic acid (DSA) and N,N,N′,N′‐tetramethyl‐1,2‐ethylenediamine (TMEDA), here referred to as DSA–TMEDA, was used to stabilize an oil‐in‐water (O/W) emulsion. Upon stimulation with CO2, DSA–TMEDA was switched off to form insoluble DSA and the water‐soluble TMEDA bicarbonate. Upon N2 bubbling and heating, the OFF state of DSA–TMEDA was restored to the surfactant of DSA–TMEDA. In this manner, O/W emulsions stabilized by DSA–TMEDA can be switched reversibly between demulsification (phase separation) and re‐emulsification (recovered emulsion) by triggering with CO2/N2 over ten times. After breakage of the emulsion, nearly all of the OFF state surfactant could be separated conveniently away from the oil phase, thus facilitating recovery and recycling of the surfactant afterward in emulsifying oil. No obvious adverse changes in the dispersed oil particles size and the relative stability of the regenerated emulsions were observed over five cycles, and the surfactant loss can be neglected during the recycling.  相似文献   

3.
A CO2‐switchable polymer surfactant was synthesized with 2‐(dimethylamino)ethyl methacrylate and butyl methacrylate. The conductivity, ζ potential, and particle size change illustrated the switchability of the surfactant, and this change could be repeated. Its surface tension decreased sharply when the sample was bubbled with CO2; this indicated the enhancement of the surface activity. In the heavy‐oil emulsion with a surfactant concentration of 8 g/L, the viscosity almost reached the highest stability. When CO2 overflowed the emulsion, it became unstable when the temperature beyond 40°C. The emulsion had a nice resistance to inorganic salt, which was maintained stably even when the concentration of NaCl was as high as 90,000 ppm. The emulsion could later be broken by the removal of CO2. Its hydration rate was over 22 times faster than that in the presence of CO2. The amount of residual oil in water was only about 53.84 ppm; this showed a good demulsification ability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41307.  相似文献   

4.
The deficiency of mass‐transfer properties in ionic liquids (ILs) has become a bottleneck in developing the novel IL‐based CO2 capture processes. In this study, the liquid‐side mass‐transfer coefficients (kL) were measured systematically in a stirred cell reactor by the decreasing pressure method at temperatures ranging from 303 to 323 K and over a wide range of IL concentrations from 0 to 100 wt %. Based on the data of kL, the kinetics of chemical absorption of CO2 with mixed solvents containing 30 wt % monoethanolamine (MEA) and 0–70 wt % ILs were investigated. The kL in IL systems is influenced not only by the viscosity but also the molecular structures of ILs. The enhancement factors and the reaction activation energy were quantified. Considering both the mass‐transfer rates and the stability of IL in CO2 absorption system, the new IL‐based system MEA + [bmim][NO3] + H2O is recommended. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2929–2939, 2014  相似文献   

5.
Novel polyaspartamide copolymers containing histamine pendants (PHEA‐HIS) were prepared from polysuccinimide, which is the thermal polycondensation product of aspartic acid, via a successive ring‐opening reaction using histamine (HIS) and ethanolamine (EA). The prepared water‐soluble copolymer was then crosslinked by reacting it with hexamethylene diisocyanate in order to provide a hydrogel with both good gel strength and reversible CO2 absorption characteristics. PHEA‐HIS gel is also pH‐sensitive and eligible to coordinate to metal ions such as Pb2+, Cu2+, and Ni2+ due to the imidazole units in its structure. The CO2‐responsive swelling behavior, metal‐ion adsorption, and morphology of the crosslinked gels were investigated. The approach described here results is a promising hydrogel with potential for a variety of industrial and biomedical applications including CO2 capture, CO2‐responsive and switchable sensors, and smart drug delivery systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43305.  相似文献   

6.
This study demonstrated that aqueous fraction of pyrolysis oil can be efficiently gasified into fuel gases methane and hydrogen via supercritical water gasification (SCWG) at moderate temperatures (500–700°C) over Ni20%Ru2%/γ‐Al2O3 catalyst. All experiments were performed in a bench‐scale continuous down‐flow tubular reactor packed with the catalyst. Carbon gasification efficiency of 0.91 mol/mol‐C (converted into CH4 and CO2) was achieved in SCWG of the aqueous fraction of pyrolysis oil (containing 2.98 wt % C) at 700°C in the presence of the catalyst. A similar carbon gasification efficiency (approx. 0.89 mol/mol‐C) was obtained at a lower temperature (600°C) with a diluted feedstock (0.7 wt %C). Scanning Electron Microscopy coupled with Energy Dispersive x‐ray and inductively coupled plasma analysis results confirmed that this catalyst was stable during SCWG of aqueous fraction of pyrolysis oil after 6 h on‐stream. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2786–2793, 2016  相似文献   

7.
BACKGROUND: Biomass is the only renewable feedstock containing carbon, and therefore the only alternative to fossil‐derived crude oil derivatives. However, the main problems concerning the application of biomass for biofuels and bio‐based chemicals are related to transport and handling, the limited scale of the conversion process and the competition with the food industry. To overcome such problems, an integral processing route for the conversion of (non‐feed) biomass (residues) to transportation fuels is proposed. It includes a pretreatment process by fast pyrolysis, followed by upgrading to produce a crude‐oil‐like product, and finally co‐refining in traditional refineries. RESULTS: This paper contributes to the understanding of pyrolysis oil upgrading. The processes include a thermal treatment step and/or direct hydroprocessing. At temperatures up to 250 °C (in the presence of H2 and catalyst) parallel reactions take place including re‐polymerization (water production), decarboxylation (limited CO2 production) and hydrotreating. Water is produced in small quantities (approx. 10% extra), likely caused by repolymerization. This repolymerization takes place faster (order of minutes) than the hydrotreating reactions (order of tens of minutes, hours). CONCLUSIONS: In hydroprocessing of bio‐oils, a pathway is followed by which pyrolysis oils are further polymerized if H2 and/or catalyst is absent, eventually to char components, or, with H2/catalyst, to stabilized components that can be further upgraded. Results of the experiments suggest that specifically the cellulose‐derived fraction of the oil needs to be transformed first, preferably into alcohols in a ‘mild hydrogenation’ step. This subsequently allows further dehydration and hydrogenation. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Layered double hydroxides based on the structure (Mg6Al2(OH)16CO3·4H2O) were synthesized by urea hydrolysis method and characterized by XRD, FTIR, SEM, and EDS. The results revealed that pH played a crucial role in the Mg‐Al hydrotalcite precipitation by controlling [urea]/[NO] molar ratio in reaction solution at 378 K and the optimized [urea]/[NO] molar ratio was 4.0. The sample calcined at 773 K was used as a solid catalyst for biodiesel synthesis. The catalyst was found to have a high catalytic activity in transesterification of rape oil to methanol with about 94% oil conversion at 338 K for 3 h. The water content of the oil could be kept below 2.0 wt % and free fatty acid content of the oil could be kept below 3.0 mg KOH·g[oil]?1 in order to get the best conversion. So, the solid catalyst was more tolerant to free fatty acid and water in rape oil than homogeneous basic‐catalysts. Moreover, the catalyst could be reused, but catalytic activity decreased on reuse of the catalyst although it remained highly active for the five uses. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

9.
A detailed survey of the effect of moisture on the CO2/N2 permeation and separation performance of Mobile Five (MFI) zeolite membranes in view of downstream postcombustion CO2 capture applications in power plants and incinerators is presented. The membranes, displaying a nanocomposite architecture, have been prepared on α‐alumina tubes by pore‐plugging hydrothermal synthesis at 443 K for 89 h using a precursor clear solution with molar composition 1 SiO2:0.45 tetrapropylammonium hydroxide:27.8 H2O. The synthesized membranes present reasonable permeation and CO2/N2 separation properties even in the presence of high water concentrations in the gas stream. A critical discussion is also provided on the technico‐economical feasibility (i.e., CO2 recovery, CO2 purity in the permeate, module volume, and energy consumption) of a membrane cascade unit for CO2 capture and liquefaction/supercritical storage from standard flue gases emitted from an incinerator. Our results suggest that the permeate pressure should be kept under primary vacuum to promote the CO2 driving force within the membrane. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3183–3194, 2012  相似文献   

10.
Boron‐substituted MFI (B‐ZSM‐5) zeolite membranes with high pervaporation (PV) performance were prepared onto seeded inexpensive macroporous α‐Al2O3 supports from dilute solution and explored for the separation of ethanol/water mixtures by PV. The effects of several parameters on microstructures and PV performance of the B‐ZSM‐5 membranes were examined systematically, including the seed size, synthesis temperature, crystallization time, B/Si ratio, H2O/SiO2 ratio and silica source. A continuous and compact B‐ZSM‐5 membrane was fabricated from solution containing 1 tetraethyl orthosilicate/0.2 tetrapropylammonium hydroxide/0.06 boric acid/600 H2O at 448 K for 24 h, showing a separation factor of 55 and a flux of 2.6 kg/m2 h along with high reproducibility for a 5 wt % ethanol/water mixture at 333 K. It was demonstrated that the incorporation of boron into mobile five (MFI) structure could increase the hydrophobicity of B‐ZSM‐5 membrane evidenced by the improved contact angle and amount of the adsorbed ethanol, and thus enhance the PV property for ethanol/water mixtures. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2447–2458, 2016  相似文献   

11.
The salting‐out phase equilibria for acetone, 1‐butanol, and ethanol (ABE) from dilute aqueous solutions using potassium carbonate (K2CO3) and dipotassium hydrogen phosphate trihydrate (K2HPO4?3H2O) as outstanding salting‐out agents were investigated. Increasing the salt concentration strengthened the salting‐out effects and improved the distribution coefficients of all three solvents (ABE) significantly. Temperature had a slight effect on the phase equilibria. The K2HPO4 solution (69 wt %) showed a stronger salting‐out effect than the K2CO3 solution (56 wt %) on recovering ABE from dilute aqueous solutions. Dilute aqueous solutions containing more solvents increased the recoveries of acetone and 1‐butanol, while the results showed a negligible effect on the solubility of ABE. The solubility of ABE was also correlated well with the molar number of salt per gram of water in the aqueous phase. A new equation demonstrated this satisfactorily. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3470–3478, 2015  相似文献   

12.
The kinetics for the reactions of carbon dioxide with 2‐amine‐2‐methyl‐1‐propanol (AMP) and carbon dioxide (CO2) in both aqueous and nonaqueous solutions were measured using a microfluidic method at a temperature range of 298–318 K. The mixtures of AMP‐water and AMP‐ethylene glycol were applied for the working systems. Gas‐liquid bubbly microflows were formed through a microsieve device and used to determine the reaction characteristics by online observation of the volume change of microbubbles at the initial flow stage. In this condition, a mathematical model according to zwitterion mechanism has been developed to predict the reaction kinetics. The predicted kinetics of CO2 absorption in the AMP aqueous solution verified the reliability of the method by comparing with literatures’ results. Furthermore, the reaction rate parameters for the reaction of CO2 with AMP in both solutions were determined. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4358–4366, 2015  相似文献   

13.
By mixing an aqueous solution of tertiary amine, N,N‐dimethylethanolamine (DMEA), with naphthenic acid (RCOOH) derived from heavy oil, a CO2 switchable zwitterionic surfactant (RCOO?DMEAH+) aqueous system was constructed. The CO2 switchability of this zwitterionic surfactant was confirmed by visual inspection, pH measurements, and conductivity tests, i.e., the RCOO?DMEAH+ decomposed into RCOOH, DMEAH+ and HCO3? after bubbling CO2 through but switched back to its original state by subsequent bubbling N2 through at 80 °C to remove the CO2. The interfacial tension tests of heavy oil in DMEA aqueous solutions indicated that the solution containing 0.5 wt% of DMEA and 0.2 wt% of NaCl resulted in the lowest interfacial tension. The O/W emulsion formed when aqueous solutions of DMEA were used to emulsify heavy oil exhibited the best performance when the oil/water volume ratio, DMEA concentration, and NaCl concentration were 65:35, 0.5 and 0.2 wt%, respectively. The feasibility of pipeline transport of the O/W heavy oil emulsion was evaluated. The results illustrated that the demulsification of the O/W emulsion after transport could be easily realized by bubbling CO2 through. Although demulsification efficiency still needs to be improved, the recycling of the aqueous phase after demulsification by removal of CO2 looks promising.  相似文献   

14.
The equilibrium solubility of CO2 into aqueous solution of sterically hindered N‐methyl‐2‐ethanolamine or methyl amino ethanol (MAE) was investigated in the temperature range of 303.1–323.1 K and total CO2 pressure in the range of 1–350 kPa. The N‐methyl‐2‐ethanolamine aqueous solutions studied were 0.968, 1.574, 2.240 and 3.125 mol kg?1 of solvent. © 2011 Canadian Society for Chemical Engineering  相似文献   

15.
In this work, a green reaction system of CO2‐water‐isopropanol was developed for 5‐hydroxymethylfurfural (HMF) production. The conversion of fructose in a CO2‐water system was first investigated, and the results showed this system could promote the formation of HMF compared to a pure water system. Then, isopropanol was introduced into the CO2‐water system and the HMF formation became better because the solvent effect of isopropanol increased the tautomeric composition of fructofuranose, which was easy to form HMF. The existence of isopropanol was found to greatly suppress secondary reactions where HMF was converted to levulinic acid and insoluble humin. Meanwhile, the effects of reaction parameters on the conversion of fructose to HMF in the CO2‐water‐isopropanol system were analyzed, and a high HMF yield of 67.14% was obtained. Finally, to further illustrate the merits of CO2‐water‐isopropanol system, productions of HMF from other carbohydrates were tested and satisfactory yields were achieved. © 2016 American Institute of Chemical Engineers AIChE J, 63: 257–265, 2017  相似文献   

16.
Solubilization of methanol and ethanol in crude palm oil, refined, bleached and deodorized palm oil (RBD PO) and RBD palm olein (POL) was studied using medium‐ and long‐chain alkanols (C4–C12). Ternary phase diagrams were constructed to determine the solubilization (isotropic) region. The results showed that methanol and ethanol are solubilized to a greater extent in an unsaturated palm olein than the saturated CPO and RBD PO in the presence of long‐chain alkanols. The minima of the solubilization curves for dodecanol, decanol and octanol were 27%, 30% and 33% of alkanol respectively in the methanol system, whereas in the ethanol system, the minima for the same alkanols were found at 22%, 24% and 27%. The longer chain‐length alkanol (dodecanol) requires a lesser amount (21% and 32%) to achieve miscibility compared with 53% and 57% for butanol in mixtures containing 70:30 and 50:50 wt ratios respectively. The kinematic viscosity of the isotropic solutions increases with the chain‐length and percentage of alkanols. Solubilization using a POL/methanol/butanol system significantly reduced the kinematic viscosity of POL from 72.7 mm2 s?1 to the value allowable for No 2 diesel fuel (1.9–4.1 mm2 s?1) or about a 96% reduction from the initial kinematic viscosity of POL. © 2002 Society of Chemical Industry  相似文献   

17.
The production of liquid hydrocarbons based on CO2 and renewable H2 is a multi‐step process consisting of water electrolysis, reverse water‐gas shift, and Fischer‐Tropsch synthesis (FTS). The syngas will then also contain CO2 and probably sometimes H2O, too. Therefore, the kinetics of FTS on a commercial cobalt catalyst was studied with syngas containing CO, CO2, H2, and H2O. The intrinsic kinetic parameters as well as the influence of pore diffusion (technical particles) were determined. CO2 and H2O showed only negligible or minor influence on the reaction rate. The intrinsic kinetic parameters of the rate of CO consumption were evaluated using a Langmuir‐Hinshelwood (LH) approach. The effectiveness factor describing diffusion limitations was calculated by two different Thiele moduli. The first one was derived by a simplified pseudo first‐order approach, the second one by the LH approach. Only the latter, more complex model is in good agreement with the experimental results.  相似文献   

18.
N‐Ethylethanolamine (EEA) and N,N‐diethylethanolamine (DEEA) represent promising candidate alkanolamines for CO2 removal from gaseous streams, as they can be prepared from renewable resources. In this work, the reaction rate constant for the reaction between CO2 and EEA was determined from the absorption rate measurements of CO2 in a blend comprising DEEA, EEA and H2O. A stirred‐cell reactor with a plane, horizontal gas‐liquid interface was used for the absorption studies. While the DEEA concentration in the formulated solution was varied in the range of 1.5–2.5 kmol/m3, the initial EEA concentration was 0.1 kmol/m3. A zwitterion mechanism for EEA and a base‐catalyzed hydration mechanism for DEEA were used to describe the reaction kinetics. At 303 K, the second‐order reaction rate constant for the CO2 reaction with EEA was found to be 8041 m3/(kmol s). The liquid‐side mass transfer coefficient was also estimated, and its value (0.004 cm/s) is in line with those typical of stirred‐cell reactors.  相似文献   

19.
The modified Clegg‐Pitzer equation is used to correlate and predict the vapor‐liquid equilibrium of the CO2‐MDEA‐H2O system. Simulated annealing (SA), a computational stochastic technique for finding near global minimum solutions to optimization problems, has been used for parameter estimation in the model to predict VLE of CO2 in aqueous MDEA solution. The solubility of CO2 in aqueous solutions of 23.8 wt % and 30.0 wt % of N‐methyldiethanolamine (MDEA) has been measured over the temperature range of 303‐323 K and CO2 partial pressure range of 1 to 100 kPa. The model predicted equilibria have been found to be in good agreement with the experimental results of VLE measurement of this work as well as those in the open literature. In this work, the SA technique has been used as an alternative to the traditional Levenberg‐Marquardt (LM) technique, to predict the VLE data accurately.  相似文献   

20.
D. Fu  F. Liu  Z. Li 《化学工程与技术》2013,36(11):1859-1864
Surface tensions of carbonated 2‐amino‐2‐methyl‐1‐propanol (AMP) and piperazine (PZ) aqueous solutions were measured by a surface tension meter which employs the Wilhemy plate principle. A thermodynamic model was proposed to correlate the surface tensions of both CO2‐unloaded and CO2‐loaded aqueous solutions by introducing the contribution of CO2 loading into the formulation of surface tension. Based on experiments and calculations, the effects of temperature, mass fractions of amines, and CO2 loading on surface tensions of carbonated aqueous solutions were demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号