首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Research relating to organic solar cells based on solution‐processed, bulk heterojunction (BHJ) films has been dominated by polymeric donor materials, as they typically have better film‐forming characteristics and film morphology than their small‐molecule counterparts. Despite these morphological advantages, semiconducting polymers suffer from synthetic reproducibility and difficult purification procedures, which hinder their commercial viability. Here, a non‐polymeric, diketopyrrolopyrrole‐based donor material that can be solution processed with a fullerene acceptor to produce good quality films is reported. Thermal annealing leads to suitable phase separation and material distribution so that highly effective BHJ morphologies are obtained. The frontier orbitals of the material are well aligned with those of the fullerene acceptor, allowing efficient electron transfer and suitable open‐circuit voltages, leading to power conversion efficiencies of 4.4 ± 0.4% under AM1.5G illumination (100 mW cm?2). Small molecules can therefore be solution processed to form high‐quality BHJ films, which may be used for low‐cost, flexible organic solar cells.  相似文献   

4.
The electrical and structural behavior of uniformly mixed films of boron subphthalocyanine chloride (SubPc) and C60 and their performance in organic photovoltaic cells is explored. Device performance shows a strong dependence on active‐layer donor–acceptor composition, and peak efficiency is realized at 80 wt.% C60. The origin of this C60‐rich optimum composition is elucidated in terms of morphological changes in the active layer upon diluting SubPc with C60. While neat SubPc is found to be amorphous, mixed films containing 80 wt.% C60 show clear nanocrystalline domains of SubPc. Supporting electrical characterization indicates that this change in morphology coincides with an increase in the hole mobility of the SubPc:C60 mixture, with peak mobility observed at a composition of 80 wt.% C60. Organic photovoltaic cells constructed using this optimum SubPc:C60 ratio realize a power conversion efficiency of (3.7 ± 0.1)% under 100 mW cm?2 simulated AM1.5G solar illumination.  相似文献   

5.
Efficient single bulk heterojunction organic solar cells based on blends of a fluorinated zinc phthalocyanine as electron donor and fullerene C60 as electron acceptor are reported. In comparison to the commonly used absorber zinc phthalocyanine, the fluorination of the molecule to F4ZnPc leads to an increase in ionisation potential and subsequently to an improvement of about 170 mV in the open circuit voltage of organic solar cells, while the short circuit current density and fill factor remain nearly unchanged. Similar to ZnPc:C60‐based devices, the device characteristics of F4ZnPc:C60 solar cells can be further enhanced by improving the blend layer morphology by substrate heating during deposition. F4ZnPc is an efficient donor material that can achieve a 4.6% power conversion efficiency in single heterojunction organic solar cells.  相似文献   

6.
Here, the performance of bulk‐heterojunction solar cells based on a series of bisadduct analogues of commonly used derivatives of C60 and C70, such PCBMs and their thienyl versions, is investigated. Due to their higher lowest unoccupied molecular orbital an increase in open‐circuit voltage and thus performance is expected. It is shown that the occurrence of a multitude of different isomers results in a decrease in the electron transport for some of the materials. Surprisingly, the solar‐cell characteristics are very similar for all materials. This apparent discrepancy is explained by a significant amount of shallow trapping occurring in the fullerene phase that does not hamper the solar cell performance due the filling of these shallow traps during illumination. Furthermore, the trisadduct analogue of [60]PCBM has been investigated, which, despite an even further increase in open‐circuit voltage, results in a significantly reduced device performance due to a strong deterioration of the electron mobility in the fullerene phase.  相似文献   

7.
The morphological, bipolar charge‐carrier transport, and photovoltaic characteristics of poly(3‐alkylthiophene) (P3AT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side‐chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3‐butylthiophene) (P3BT, m = 4), poly(3‐pentylthiophene) (P3PT, m = 5), and poly(3‐hexylthiophene) (P3HT, m = 6). Solar cells with these blends deliver similar order of photo‐current yield (exceeding 10 mA cm?2) irrespective of side‐chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole‐only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field‐effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells.  相似文献   

8.
New tetraalkylcyclobutadiene–C60 adducts are developed via Diels–Alder cycloaddition of C60 with in situ generated cyclobutadienes. The cofacial π‐orbital interactions between the fullerene orbitals and the cyclobutene are shown to decrease the electron affinity and thereby increase the lowest unoccupied molecular orbital (LUMO) energy level of C60 significantly (ca. 100 and 300 meV for mono‐ and bisadducts, respectively). These variations in LUMO levels of fullerene can be used to generate higher open‐circuit voltages (VOC) in bulk heterojunction polymer solar cells. The tetramethylcyclobutadiene–C60 monoadduct displays an open‐circuit voltage (0.61 V) and a power conversion efficiency (2.49%) comparable to the widely used P3HT/PCBM (poly(3‐hexylthiophene/([6,6]‐phenyl‐C61‐butyric acid methyl ester) composite (0.58 V and 2.57%, respectively). The role of the cofacial π‐orbital interactions between C60 and the attached cyclobutene group was probed chemically by epoxidation of the cyclobutene moiety and theoretically through density functional theory calculations. The electrochemical, photophysical, and thermal properties of the newly synthesized fullerene derivatives support the proposed effect of functionalization on electron affinities and photovoltaic performance.  相似文献   

9.
A simple, solution‐processed route to the development of MoOx thin‐films using oxomolybdate precursors is presented. The chemical, structural, and electronic properties of these species are characterized in detail, within solution and thin‐films, using electrospray ionization mass spectrometry, grazing angle Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, X‐ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. These analyses show that under suitable deposition conditions the resulting solution processed MoOx thin‐films possess the appropriate morphological and electronic properties to be suitable for use in organic electronics. This is exemplified through the fabrication of poly(3‐hexylthiophene):[6,6]‐phenyl C61 butyric acid methyl ester (P3HT:PC61BM) bulk heterojunction (BHJ) solar cells and comparisons to the traditionally used poly(3,4‐ethyldioxythiophene)/poly(styrenesulfonate) anode modifying layer.  相似文献   

10.
The vast majority of ternary organic solar cells are obtained by simply fabricating bulk heterojunction (BHJ) active layers. Due to the inappropriate distribution of donors and acceptors in the vertical direction, a new method by fabricating pseudoplanar heterojunction (PPHJ) ternary organic solar cells is proposed to better modulate the morphology of active layer. The pseudoplanar heterojunction ternary organic solar cells (P‐ternary) are fabricated by a sequential solution treatment technique, in which the donor and acceptor mixture blends are sequentially spin‐coated. As a consequence, a higher power conversion efficiency (PCE) of 14.2% is achieved with a Voc of 0.79 V, Jsc of 25.6 mA cm?2, and fill factor (FF) of 69.8% compared with the ternary BHJ system of 13.8%. At the same time, the alloyed acceptor is likely formed between two the acceptors through a series of in‐depth explorations. This work suggests that nonfullerene alloyed acceptor may have great potential to realize effective P‐ternary organic solar cells.  相似文献   

11.
A series of four conjugated molecules consisting of a fluorenone central unit symmetrically coupled to different oligothiophene segments are conceptually designed and synthesized to provide new electroactive materials for application in photovoltaic devices. The combination of electron‐donating oligothiophene building blocks with an electron‐accepting fluorenone unit results in the emergence of a new band assigned to an intramolecular charge transfer transition that gives rise to the extension of the absorption spectral range of the resulting molecules. Detailed spectroscopic and voltammetric investigations show that all studied molecules have highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) level positions, which make them good candidates for the application as electron‐donors in bulk‐heterojunction photovoltaic cells, with (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐C60 as electron acceptor component. Moderate device performances, with power conversion efficiencies (PCEs) comprised between 0.3 and 0.6%, were obtained with rigid molecules, containing either the bridging units between the thiophene rings, i.e., (2,7‐bis(4,4′‐dioctyl‐cyclopenta[2,1‐b:3,4‐b′]dithiophen‐2‐yl)‐fluoren‐9‐one (SCPTF) and 2,7‐bis(4‐(dioctylmethylene)‐cyclopenta[2,1‐b:3,4‐b′]dithiophen‐5‐yl)‐fluoren‐9‐one (MCPTF) or a vinylene unit 2,7‐bis(5‐[(E)‐1,2‐bis(3‐octylthien‐2‐yl)ethylene])‐fluoren‐9‐one (TVF), whereas with (2,7‐bis‐(3,3?‐dioctyl‐[2,2′;5′,2″;5″,2?]quaterthiophen‐5‐yl)‐fluoren‐9‐one (QTF) PCE up to 1.2% (under AM 1.5 illumination, 100 mW cm?2, active area 0.28 cm2) was obtained. The strong π‐stacking interactions in the solid state for this oligomer leading to improved morphology could explain the good performances of QTF‐based devices, which rank among the highest recorded for non‐polymeric materials. Consequently, fluorenone‐based non‐polymeric molecules constitute highly attractive materials for solution‐processable solar cell applications.  相似文献   

12.
The effect of injection and extraction barriers on flat heterojunction (FHJ) and bulk heterojunction (BHJ) organic solar cells is analyzed. The barriers are realized by a combination of p‐type materials with HOMOs varying between –5.0 and –5.6 eV as hole‐transport layer (HTL) and as donor in vacuum‐evaporated multilayer p‐i‐metal small‐molecule solar cells. The HTL/donor interface can be seen as a model for the influence of contacts in organic solar cells in general. Using drift‐diffusion simulations we are well able to reproduce and explain the experimental I–V curves qualitatively. In FHJ solar cells the open‐circuit voltage (Voc) is determined by the donor and is independent of the HTL. In BHJ solar cells, however, Voc decreases if injection barriers are present. This different behavior is caused by a blocking of the charge carriers at a spatially localized donor/acceptor heterojunction, which is only present in the FHJ solar cells. The forward current is dominated by the choice of HTL. An energy mismatch in the HOMOs leads to kinks in the I–V curves in the cases for which Voc is independent of the HTL.  相似文献   

13.
Motivated by the possibility of modifying energy levels of a molecule without substantially changing its band gap, the impact of gradual fluorination on the optical and structural properties of zinc phthalocyanine (FnZnPc) thin films and the electronic characteristics of FnZnPc/C60 (n = 0, 4, 8, 16) bilayer cells is investigated. UV–vis measurements reveal similar Q‐ and B‐band absorption of FnZnPc thin films with n = 0, 4, 8, whereas for F16ZnPc a different absorption pattern is detected. A correlation between structure and electronic transport is deduced. For F4ZnPc/C60 cells, the enhanced long range order supports fill factors of 55% and an increase of the short circuit current density by 18%, compared to ZnPc/C60. As a parameter being sensitive to the organic/organic interface energetics, the open circuit voltage is analyzed. An enhancement of this quantity by 27% and 50% is detected for F4ZnPc‐ and F8ZnPc‐based devices, respectively, and is attributed to an increase of the quasi‐Fermi level splitting at the donor/acceptor interface. In contrast, for F16ZnPc/C60 a decrease of the open circuit voltage is observed. Complementary photoelectron spectroscopy, external quantum efficiency, and photoluminescence measurements reveal a different working principle, which is ascribed to the particular energy level alignment at the interface of the photoactive materials.  相似文献   

14.
A novel family of soluble conjugated dendritic oligothiophenes (DOTs) as monodisperse 3D macromolecular architectures was characterized with respect to optical and redox properties in solution and in solid films. Band gaps of 2.5–2.2 eV, typical for organic semiconductors, were determined as well as HOMO/LUMO energy levels ideal for efficient electron transfer to acceptors such as [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) identifying them as suitable materials for solar cell applications. Solution‐processed bulk‐heterojunction solar cells using DOTs as electron donor and PCBM as acceptor were prepared and investigated. High open‐circuit voltages VOC of 1.0 V and power‐conversion efficiencies up to 1.72% were obtained for the DOT‐based devices. The higher generations DOTs provide the highest efficiencies. Based on the monodispersity of the DOTs, an analysis of the molar ratio between donor and acceptor in the blended film was possible leading to an optimal value of five to six thiophene units per PCBM.  相似文献   

15.
The bulk‐ionized photoconductivity of C60 is reported as an origin of the bias‐dependent linear change of the photocurrent in copper phthalocyanine (CuPc)/C60 planar heterojunction solar cells, based on the observation of the variation of the bias‐dependent photocurrent on excitation wavelengths and the thickness‐dependent photocurrent of the C60 layer. A theoretical model, which is a combination of the Braun‐Onsager model for the dissociation of excitons at the donor/acceptor interface and the Onsager model for the bulk ionization of excitons in the C60 layer, describes the bias‐dependent photocurrent in the devices very well. The bulk‐ionized photoconductivity of C60 must generally contribute to the photocurrent in organic photovoltaics, since fullerene and fullerene derivatives are widely used in these devices.  相似文献   

16.
17.
Solution‐processed organic photovoltaics (OPVs) have continued to show their potential as a low‐cost power generation technology; however, there has been a significant gap between device efficiencies fabricated with lab‐scale techniques—i.e., spin coating—and scalable deposition methods. Herein, temperature‐controlled slot die deposition is developed for the photoactive layer of OPVs. The influence of solution and substrate temperatures on photoactive films and their effects on power conversion efficiency (PCE) in slot die coated OPVs using a 3D printer‐based slot die coater are studied on the basis of device performance, molecular structure, film morphology, and carrier transport behavior. These studies clearly demonstrate that both substrate and solution temperatures during slot die coating can influence device performance, and the combination of hot substrate (120 °C) and hot solution (90 °C) conditions result in mechanically robust films with PCE values up to 10.0% using this scalable deposition method in air. The efficiency is close to that of state‐of‐the‐art devices fabricated by spin coating. The deposition condition is translated to roll‐to‐roll processing without further modification and results in flexible OPVs with PCE values above 7%. The results underscore the promising potential of temperature‐controlled slot die coating for roll‐to‐roll manufacturing of high performance OPVs.  相似文献   

18.
A new donor (D)–acceptor (A) conjugate, benzodithiophene‐rhodanine–[6,6]‐phenyl‐C61 butyric acid methyl ester (BDTRh–PCBM) comprising three covalently linked blocks, one of p‐type oligothiophene containing BDTRh moieties and two of n‐type PCBM, is designed and synthesized. A single component organic solar cell (SCOSC) fabricated from BDTRh–PCBM exhibits the power conversion efficiency (PCE) of 2.44% and maximum external quantum efficiency of 46%, which are the highest among the reported efficiencies so far. The SCOSC device shows efficient charge transfer (CT, ≈300 fs) and smaller CT energy loss, resulting in the higher open‐circuit voltage of 0.97 V, compared to the binary blend (BDTRh:PCBM). Because of the integration of the donor and acceptor in a single molecule, BDTRh‐PCBM has a specific D–A arrangement with less energetic disorder and reorganization energy than blend systems. In addition, the SCOSC device shows excellent device and morphological stabilities, showing no degradation of PCE at 80 °C for 100 h. The SCOSC approach may suggest a great way to suppress the large phase segregation of donor and acceptor domains with better morphological stability compared to the blend device.  相似文献   

19.
Optimization and analysis of conjugated polymer side chains for high‐performance organic photovoltaic cells (OPVs) reveal a critical relationship between the chemical structure of the side chains and photovoltaic properties of polymer‐based bulk heterojunction OPVs. In particular, the impact of the alkyl side chain length on the π‐bridging (thienothiophene, TT) unit is considered by designing and synthesizing a series of benzodithiophene derivatives (BDT(T)) and thieno[3,2‐b]thiophene‐π‐bridged thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (ttTPD) alternating copolymers, PBDT(T)‐(R2)ttTPD, with alkyl chains of varying length on the TT unit. Using a combination of 2D X‐ray diffraction, Raman spectroscopy, and electrical device characterization, it is elucidated in detail how these subtle changes to the chemical structure affect the molecular conformation, thin film molecular packing, blend film morphology, optoelectronic properties, and hence overall photovoltaic performance. For copolymers employing both the alkoxy or alkylthienyl‐substituted BDT motifs, it is found that octyl side chains on TT unit yield the maximum degree of molecular backbone coplanarity and result in the highest quality of molecular packing and optimized hole mobility. Inverted devices fabricated using this PBDTT‐8ttTPD: polymer/[6,6]‐phenyl‐C71‐butylic acid methyl ester active layer show a maximum power conversion efficiency (PCE) of 8.7% with large area cells (0.64 cm2) maintaining a PCE of 7.5%.  相似文献   

20.
In solid‐state dye sensitized solar cells (SSDSCs) charge recombination at the dye‐hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar co‐adsorbents on the photovoltaic performance of sensitized hetero‐junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon‐chain acid, i.e., 4‐guanidinobutyric acid (GBA) and 4‐aminobutyric acid (ABA). These two molecules were implemented as co‐adsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co‐adsorbent combination increases both the open circuit voltage (Voc) and short‐circuit current density (Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co‐adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号