首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The friction and wear behavior of Kevlar fabric composites reinforced by PTFE or graphite powders was investigated using a Xuanwu‐III friction and wear tester at dry sliding condition, with the unfilled Kevlar fabric composite as a reference. The worn surfaces were analyzed by means of scanning electron microscope, and X‐ray photoelectron spectroscopy. It was found that PTFE or graphite as fillers could significantly improve the tribological behavior of the Kevlar fabric composites, and the Kevlar fabric composites filled with 20% PTFE exhibited the best antiwear and antifriction ability among all evaluated cases. The transfer films established with two lubricants in sliding wear of composites against metallic counterparts made contributions to reducing friction coefficient and wear rate of Kevlar fabric composites. In particular, FeF2 generated in the sliding of Kevlar fabric composites filled with PTFE against counterpart pin improved the bonding strength between the transfer film and counterpart surface, which accounted for the lowest friction coefficient and wear rate of the Kevlar fabric composites filled with PTFE measured in the testing. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

2.
The carbon fabric composites filled with several nanoparticles were prepared by dip‐coating and hot press molding technique. The friction and wear behavior of the resulting composites were studied systematically using a block‐on‐ring arrangement. Experimental results showed that the optimal content of nanoparticles as fillers contributed to improve the tribological properties of the carbon fabric composites. Moreover, the friction and wear properties of the fabric composites were closely dependent with the sliding conditions. The differences in the transfer film formed on the counterpart surface during the friction process also accounted for the friction and wear behavior of carbon fabric composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The tribological behaviors of hybrid PTFE/Kevlar fabric composites filled with nano‐SiC and/or submicron‐WS2 fillers were studied. Scanning electron microscopy and energy‐dispersive X‐ray spectrometer were used for analysis of the worn surface, transfer film, and debris of the PTFE/Kevlar fabric composites. In addition, the wear volume loss of the composite was measured by means of a laser microscopic 3D and profile measurement apparatus. The results indicate that although both single fillers and hybrid fillers can reduce the wear rate of composites, but hybrid fillers filled composites could achieve the desired comprehensive tribological properties in dry sliding. The improved tribological performance of filled composites can be attributed to two aspects: the formation of a thin and tenacious transfer film on the counter‐surface, and the restrain the formation of larger debris. Tiny wear debris was easily trapped in the gap of a worn surface and can repair the damaged surface. In addition, the trapped debris could be considered as a secondary source of lubricant. POLYM. COMPOS., 37:2218–2226, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
As self‐lubricating bearing liner materials, tribological properties of milled pitch‐based carbon fibers (CFs) modified polytetrafluoroethylene (PTFE)/Kevlar fabric composites were investigated, and the microscopic morphology of worn surface was studied. The results show that the appropriate incorporation of CFs can obviously reduce the wear rate of the fabric composite with almost unchanging friction coefficient. The wear rates of 5 wt % CF‐filled PTFE/Kevlar fabric composites are decreased by 30% and 48% for two kinds of composites made with fibers from different producers compared with unfilled fabric composites. Scanning electron microscopy observations show that the appropriate incorporation of CFs obviously improves the interfacial bonding and reduces pull‐out and fracture of Kevlar fiber. Meanwhile, the introduction of CFs at proper fraction is helpful to form smooth and continuous transfer film on the surface of metal counterpart. The improving mechanism of the CF is attributed to increasing mechanical strength, thermal conductivity and self‐lubricating effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46269.  相似文献   

5.
Short basalt fiber (BF) reinforced polyimide (PI) composites were fabricated by means of compression‐molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring‐on‐block test rig under dry sliding conditions. The morphologies of the worn surfaces and the transfer films that formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The influence of the short BF content, load, and sliding speed on the tribological behavior of the PI composites was examined. Experimental results revealed that the low incorporation of BFs could improve the tribological behavior of the PI composites remarkably. The friction coefficient and wear rate decreased with increases in the sliding speed and load, respectively. The transfer film that formed on the counterpart surface during the friction process made contributions to reducing the friction coefficient and wear rate of the BF‐reinforced PI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
To improve the tribological properties of basalt‐fabric‐reinforced phenolic composites, solid lubricants of MoS2 and graphite were incorporated, and the tribological properties of the resulting basalt‐fabric composites were investigated on a model ring‐on‐block test rig under dry sliding conditions. The effects of the filler content, load, and sliding time on the tribological behavior of the basalt‐fabric composites were systematically examined. The morphologies of the worn surfaces and transfer films formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The experimental results reveal that the incorporation of MoS2 significantly decreased the friction coefficient, whereas the inclusion of graphite improved the wear resistance remarkably. The results also indicate that the filled basalt‐fabric composites seemed to be more suitable for friction materials serving under higher loads. The transfer films formed on the counterpart surfaces during the friction process made contributions to the reduction of the friction coefficient and wear rate of the basalt‐fabric composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The composites of poly(ether ether ketone) (PEEK) filled with micrometer‐sized Cu and Fe particles were prepared by compression molding. The friction and wear behaviors of the composites were examined on a pin‐on‐disc friction‐and‐wear tester by sliding PEEK‐based composites against tool steel at a sliding speed of 1.0 m s−1 and a normal load of 19.6N. Optical microscopic analysis of the transfer film and of the worn pin surfaces and wear debris was performed to investigate the wear mechanisms of the composites. It was found that Cu and Fe used as filler considerably decreased the wear rate of PEEK. A thin, uniform, and tenacious transfer film was formed when Cu was used as the filler, and a nonuniform and thick transfer film was formed when Fe was used as the filler. The transfer film played a key role in increasing the wear resistance of the PEEK composites. Plastic deformation was dominant for wear of PEEK–Cu, while abrasion and adhesion were dominant for wear of PEEK–Fe. Because of the strong affinity between Fe as filler and its identical counterpart in the counterface tool steel surface, the adhesion between the PEEK–Fe composite surface and the counterface tool steel surface was thus severe. This contributed to the generation of a thicker transfer film for PEEK–Fe. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 179–184, 2000  相似文献   

8.
Epoxy chloropropane (ECP) grafting modification method was used for the surface treatment of Kevlar fiber to improve the interfacial adhesion of the Kevlar fiber-reinforced polyimide (PI) composite. The surface characteristics of untreated and treated Kevlar fiber were characterized by Fourier transform infrared (FT-IR) spectroscope. The friction and wear properties of the polyimide (PI) composites filled with differently surface treated Kevlar fibers (20 vol%), sliding against GCr15 steel, were investigated on a ball-on-block reciprocating UMT-2MT tribometer. Experimental results revealed that ECP treatment largely reduced the friction and wear of Kevlar/PI composites. Scanning electron microscope (SEM) investigation of worn surfaces of PI composites showed that ECP treated Kevlar/PI composite had the strongest interfacial adhesion and the smoothest worn surface under given load and reciprocating sliding frequency.  相似文献   

9.
Because of high wear rate and low thermal deformation temperature, the generalization and application of polytetrafluoroethylene (PTFE) in the field of tribology is restrained to a certain extent. In order to improve the wear resistance and thermal stability of this self‐lubricating polymer, organic montmorillonite (OMMT) nanoparticle reinforced polyethersulfone (PES) and PTFE ternary composites were prepared by the cold molding and vacuum sintering technology. The effects of sodium montmorillonite (Na‐MMT) and OMMT on the microstructures, thermal stabilities and tribological properties of PTFE composites were comparatively studied. The results show that the thermal stability of the PES/PTFE composites is clearly improved by the incorporation of OMMT nanoparticles. Not only the friction coefficients but also the wear rates of OMMT/PES/PTFE composites are less than those of Na‐MMT/PES/PTFE composites under identical tribological tests. Of all these PTFE composites, the PES/PTFE composite containing 10.0 wt% OMMT nanoparticles exhibits the best friction and wear properties (μ = 0.14, k = 5.78 × 10?15 m3 N–1 m?1). This can be attributed to the existence of a polymer multicomponent layer consisting of PTFE, PES and OMMT on the composite surface as well as the formation of uniform PTFE transfer film on the worn surfaces of metal counterparts.  相似文献   

10.
Abstract

The effects of Kevlar fibre additions and, particularly, the surface modification of the Kevlar fibres, on the sliding wear behaviour of the ultra high molecular weight polyethylene (UHMWPE) composites were investigated. The results showed that the sliding friction coefficient of the UHMWPE composites increased with the fibre content increase. The wear resistance of the UHMWPE composite was highest when the Kevlar fibre content was ~10 vol.-% and decreased as the applied normal load was increased. It was found that the silane modification of the Kevlar fibres improved the wear resistance and tensile strength of the UHMWPE composites as well.  相似文献   

11.
SiO2 nanoparticle filled–poly(phthalazine ether sulfone ketone) (PPESK) composites with various filler volume fractions were made by heating compression molding. The tribological behavior of the PPESK composites was investigated using a block‐on‐ring test rig by sliding PPESK‐based composite blocks against a mild carbon steel ring. The morphologies of the worn composite surfaces, wear debris, and the transferred films formed on the counterpart steel surface were examined with a scanning electron microscope, whereas the chemical state of the Fe element in the transfer film was analyzed with X‐ray photoelectron spectroscopy. In addition, IR spectra were taken to characterize the structure of wear debris and PPESK composites. It was found that SiO2 nanoparticle filled–PPESK composites exhibit good wear resistance and friction‐reduction behavior. The friction and wear behavior of the composites was improved at a volume fraction between 4.2 and 14.5 vol % of the filler SiO2. The results based on combined SEM, XPS, and IR techniques indicate that SiO2 nanoparticle filled–PPESK composite is characterized by slight scuffing in dry sliding against steel and polishing action between composite surface and that of the countpart ring, whereas unfilled PPESK is characterized by severe plastic deformation and adhesion wear. In the former case a thin, but not complete, transfer film was formed on the surface of the counterpart steel, whereas in the latter case, a thick and lumpy transfer film was formed on the counterpart steel surface. This accounts for the different friction and wear behavior of unfilled PPESK and SiO2 nanoparticle filled–PPESK composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2136–2144, 2002  相似文献   

12.
The composites of polyetheretherketone (PEEK) filled with nanometer SiC of different proportions were prepared by compression molding. The tribological behaviors of the composites under lubrication of distilled water were investigated and compared with that under dry sliding, on an M‐200 friction and wear test rig, by running a plain carbon steel (AISI 1045 steel) ring against the composite block. The worn surfaces of nanometer SiC filled‐PEEK and the transfer film were observed by means of scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). As the results, nanometer SiC as the filler greatly improves the wear resistance of PEEK under dry sliding and distilled water lubrication, though the composites show different dependence of wear resistance on the filler content. Nanometer SiC‐filled PEEK showed signs of slight scuffing under distilled water lubrication, while a thin, uniform, and tenacious transfer film was formed on the surface of the counterpart steel ring. On the contrary, unfilled PEEK under lubrication of water showed signs of severe plowing and erosion, while the worn surface of the counterpart ring was very rough, and a discontinuous PEEK transfer film was formed. Thus, the different friction and wear behaviors of unfilled PEEK and nanometer SiC‐filled PEEK can be attributed to the different characteristics of the corresponding transfer films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 609–614, 2000  相似文献   

13.
The friction and wear properties of poly (ether ether ketone) (PEEK) composites filled with potassium titanate whiskers (PTWs) under alkali, water, and dry conditions were investigated. The wear mechanisms in different lubrication situations were studied on the basis of examinations of the worn and counterpart surfaces with scanning electron microscopy and optical microscopy. The results showed that PTWs could obviously increase the wear resistance and reduce the friction coefficient of the PEEK composites under dry sliding conditions. Only when the PTW content was greater than 35 wt % did the wear resistance and friction coefficient deteriorate. Sliding in water caused increases in the wear rate and friction coefficient of the PEEK composites, and the PTW‐filled PEEK composites showed the highest friction coefficient and wear rate under this lubrication condition. On the contrary, sliding in an alkaline solution, the PTW‐filled PEEK composites showed the lowest friction coefficient and almost the same level of wear resistance as that found under the dry condition. Furrows and abrasive wear were the main mechanisms for the PTW‐filled PEEK composites sliding in water. The transfer onto the counterpart rings was significantly hindered with sliding under water and alkali conditions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

15.
The wear rate and coefficient of friction for graphite flake (GF)‐filled polytetrafluoroethylene (PTFE) composites were evaluated on a pin‐on‐disk wear tester under dry conditions. Scanning electron microscopy showed significant reduction in the abrasive wear of the composites. The wear rates of 5 and 10 wt % GF composites were reduced by more than 22 and 245 times, respectively, at sliding speed of 1 m/s. With increasing sliding distance from 1 to 8 km, the wear rate of pure PTFE decreased by 1.4 times whereas that of composites, it decreased up to three times. The significant decreased in wear rate and coefficient of friction might be attributed to the formation of a thin and tenacious transfer film on the counter‐surface. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
以针状的硅灰石和鳞片石墨为填料,采用冷压—烧结工艺制备了不同填料含量的聚四氟乙烯(PTFE)复合材料,考察了复合材料的摩擦磨损性能,并利用扫描电子显微镜对磨痕和转移膜进行了分析。结果表明,单独填充硅灰石和石墨时,PTFE的磨损率都会随填料含量的增加而降低,硅灰石的作用要强于石墨;但硅灰石会使PTFE的摩擦因数明显增大,而石墨会使PTFE的摩擦因数降低;2种填料提升PTFE耐磨性的作用机理不同,硅灰石在摩擦过程中会在滑动界面区域上逐渐堆积,起到优先承担载荷的作用;而石墨在摩擦过程中会发生片层的滑移与剥离,有助于转移膜的形成;适量的硅灰石(含量为20 %,质量分数,下同)与石墨(含量为5 %或10 %)复合填充能产生协同效应,使PTFE的磨损率进一步降低,耐磨性比未填充的PTFE提高200倍。  相似文献   

17.
Micrometer and nanometer copper particle‐filled polyoxymethylene composites (coded as POM‐micro Cu and POM‐nano Cu, respectively) were prepared by compression molding. The compression strength and tensile strength of the composites were evaluated with a DY35 universal materials tester. An RFT‐III reciprocating friction and wear tester was used to examine the tribological properties of the composites. The elemental compositions in the transfer films and the chemical states of the elements in the composite‐worn surfaces were analyzed with electron probe microanalysis and X‐ray photoelectron spectroscopy, while the surface morphologies were observed with scanning electron microscopy. It was found that Cu( CH2 O )n was produced in sliding of a POM‐nano Cu pin against an AISI 1045 steel block and Cu2O was produced in sliding of a POM‐micro Cu pin against the same counterface. POM‐micro Cu exhibited higher copper concentration in the transfer film compared with POM‐nano Cu, and the transfer film of the former was thick and patchy compared with that of the latter. It was also found that micrometer and nanometer copper particles as fillers in POM exhibit a distinctive size effect in modifying the wear mechanisms of the composites. In other words, the wear mechanism of POM‐micro Cu is mainly scuffing and adhesion, while that of POM‐nano Cu is mainly plastic deformation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2404–2410, 2000  相似文献   

18.
用热压成型法制备了纳米、微米ZnO填充联苯型聚醚砜酮(PPESUK)复合材料;考察了复合材料的显微硬度和弯曲强度;并研究了干摩擦条件下纳米、微米ZnO对复合材料摩擦磨损性能的影响。利用扫描电子显微镜观察分析PPESUK/ZnO复合材料磨损表面形貌及磨损机理。结果表明,在干摩擦条件下纳米ZnO填充PPESUK的转移膜不完整,致使对偶钢环对复合材料表面产生严重的犁削;而微米ZnO填充PPESUK的主要磨损机理是严重的磨粒磨损。  相似文献   

19.
The dry/wet environment's effects on the sliding friction properties of fabric–silicone rubber composites are studied, and the wear resistance of polyester fabric is evaluated. The yarn directions of the fabrics (inner and outer) have significant influence on the coefficient of friction (COF) of fabric–silicone rubber composites during sliding friction due to the difference in fabric texture and yarn modulus. The COF's variation laws of fabric–silicone rubber composites under different vertical loads and sliding rates are observed, respectively. Additionally, the outer fabric is more sensitive to the changes of vertical loads than those of the sliding rates under the wet environment, which can be attributed to the destruction of the fabric original structure by high load, resulting in the fabric fibers' pulling and breaking during the steel ball's sliding. This study provides new ideas for the design of fabric–silicone rubber composites applied in friction conditions and complex environments.  相似文献   

20.
In this work, the response of different filler loading of zinc oxide (ZnO) reinforced ultra‐high‐molecular‐weight polyethylene (UHMWPE) on mechanical, abrasive wear, and antibacterial properties were studied. Two variants of untreated ZnO‐reinforced UHMWPE (U‐ZPE) and treated ZnO‐reinforced UHMWPE (T‐ZPE) with aminoproplytriethoxysilane (APTES) were used to compare the improvement of the mechanical, abrasive wear, and antibacterial properties. The abrasive wear and friction behaviors were monitored using a pin‐on‐disc (POD) test rig with different applied loads and sliding speeds against 400‐grit size of silicon carbide (SiC) abrasive paper under dry sliding conditions. The antibacterial assessments of the composites were tested against two common human body bacteria, that is, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results have shown that T‐ZPE possess higher ultimate tensile strength and elongation at break values as compared to U‐ZPE. Furthermore, the T‐ZPE have higher wear resistance compared to U‐ZPE and pure UHMWPE. The average coefficient of friction (COF) of UHMWPE was not significantly affected by the addition of both untreated and treated ZnO filler. The wear mechanisms were studied under scanning electron microscopy (SEM). Both U‐ZPE and T‐ZPE composites showed active inhibition against E. coli and S. aureus bacteria. POLYM. COMPOS., 34:1020–1032, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号