首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The focus of this work was to synthesize bio‐based polyurethane (PU) foams from soybean oil (SO). Different polyols from SO were produced as follows: soybean oil monoglyceride (SOMG), hydroxylated soybean oil (HSO), and soybean oil methanol polyol (SOMP). The SOMG was a mixture of 90.1% of monoglyceride, 1.3% of diglyceride, and 8.6% of glycerol. The effect of various variables (polyol reactivity, water content curing temperature, type of catalyst, isocyanate, and surfactant) on the foam structure and properties were analyzed. SOMG had the highest reactivity because it was the only polyol‐containing primary hydroxyl (? OH) groups in addition to a secondary ? OH group. PU foams made with SOMG and synthetic polyol contained small uniform cells, whereas the other SO polyols produced foams with a mixture of larger and less uniform cells. The type of isocyanate also had an influence on the morphology, especially on the type of cells produced. The foam structure was found to be affected by the water and catalyst content, which controlled the foam density and the cure rate of the PU polymer. We observed that the glass transition (Tg) increased with the OH value and the type of diisocyanate. Also, we found that the degree of solvent swelling (DS) decreased as Tg increased with crosslink density. These results are consistent with the Twinkling Fractal Theory of Tg. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
This study investigated the physical properties of water‐blown rigid polyurethane (PU) foams made from VORANOL®490 (petroleum‐based polyether polyol) mixed with 0–50% high viscosity (13,000–31,000 cP at 22°C) soy‐polyols. The density of these foams decreased as the soy‐polyol percentage increased. The compressive strength decreased, decreased and then increased, or remained unchanged and then increased with increasing soy‐polyol percentage depending on the viscosity of the soy‐polyol. Foams made from high viscosity (21,000–31,000 cP) soy‐polyols exhibited similar or superior density‐compressive strength properties to the control foam made from 100% VORNAOL® 490. The thermal conductivity of foams containing soy‐polyols was slightly higher than the control foam. The maximal foaming temperatures of foams slightly decreased with increasing soy‐polyol percentage. Micrographs of foams showed that they had many cells in the shape of sphere or polyhedra. With increasing soy‐polyol percentage, the cell size decreased, and the cell number increased. Based on the analysis of isocyanate content and compressive strength of foams, it was concluded that rigid PU foams could be made by replacing 50% petroleum‐based polyol with a high viscosity soy‐polyol resulting in a 30% reduction in the isocyanate content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
植物油基多元醇的合成研究   总被引:1,自引:0,他引:1  
该文以环氧大豆油(ESBO)和甲醇为原料,在SO42-/ZrO2固体酸催化作用下,通过开环加成反应制备了植物油多元醇(Polyol)。借助红外、核磁共振、热分析等技术对产物结构和性质进行了分析,考察了原料配比、反应温度、反应时间和催化剂用量对ESBO转化率和多元醇合成的影响。结果表明:在反应原料配比n(甲醇)∶n(ESBO)=50∶1,反应温度373 K,反应时间2 h条件下,环氧大豆油转化率为96.8%,羟基值为198.3 mg KOH/g。  相似文献   

5.
Polyurethane Networks (PUNs) were synthesized using polyols derived from soybean oil, petroleum, or a blend of the two in conjunction with diisocyanate. The soybean‐based polyols (SBPs) were prepared using air oxidation, or by hydroxylating epoxidized soybean oil. Some of the networks were subjected to several solvents to determine their respective swelling behavior and solubility parameters. Sol‐fractions were also determined, and DMA experiments were utilized to monitor the changes in storage modulus and tan δ with temperature for networks with sol and with the sol extracted. A linear relationship was noted between the hydroxyl number of a SBP and the glass transition temperature of its corresponding unextracted PU network within the range of hydroxyl numbers (i.e., 55–237 mg KOH/g) and glass transition temperatures (i.e., ?21–+83°C) encountered in this work. This same linear relationship was realized between the weighted hydroxyl number of soy and petroleum‐based polyol blends and the glass transition temperature of the resulting unextracted and extracted network PUs within the ranges utilized in this study (i.e., 44–57 mg KOH/g, ?54–19°C). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1432–1443, 2006  相似文献   

6.
Epoxidized soy bean oil (ESBO) polyether polyols have been prepared and evaluated as potential bio-renewable replacements for bisphenol A based epoxy coatings. Zinc triflate was found to be more efficient in catalyzing the ESBO hydroxyl reaction than methanesulfonic acid or boron trifluoride etherate. With an excess of n-butanol, ESBO epoxide groups ring open to give the expected polyether polyol, but as the n-butanol concentration is reduced, dimers, trimers, and higher molecular weight analogs of the triglycerides appear. Weight average molecular weight can be increased in a controlled fashion to over 10,000 Da by using trimethylolpropane (TMP) in place of n-butanol. The addition of solvent reduces molecular weight of the polyether polyol, at an equivalent TMP level while still allowing good reaction control. These polyether polyols can be cured with phenolic resins, but solvent and blush resistance, adhesion, and wedge bend flexibility are inferior to a commercial bisphenol A epoxy control.  相似文献   

7.
To explore the potential of isocyanate usage reduction, water‐blown rigid polyurethane foams were made by replacing 0, 20, and 50% of Voranoll® 490 in the B‐side of the foam formulation by epoxidized soybean oil (ESBO) with an isocyanate index ranging from 50 to 110. The compressive strength, density, and thermal conductivity of foams were measured. The foam surface temperature was monitored before and throughout the foaming reaction as an indirect indication of the foaming temperature. Increasing ESBO replacement and/or decreasing isocyanate index decreased the foam's compressive strength. The density of the foam decreased while decreasing the isocyanate index to 60. Further decrease in isocyanate index resulted in foam shrinkage causing a sharp increase in the foam density. The thermal conductivity of foams increased while decreasing the isocyanate index and increasing the ESBO replacement. Mathematical models for predicting rigid polyurethane foam density, compressive strength, and thermal conductivity were established and validated. Similar to compressive strength, the foaming temperature decreased while decreasing the isocyanate index and increasing the ESBO replacement. Because of the lower reactivity of ESBO with isocyanate, the rate of foaming temperature decrease with decreasing isocyanate index was in the order of 0% > 20% > 50% ESBO replacement. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
以聚醚多元醇、聚酯多元醇和蓖麻油为混合多元醇,以改性MDI(4,4′-二苯基甲烷二异氰酸酯)及PAPI(多亚甲基多苯基多异氰酸酯)为混合异氰酸酯,合成了聚氨酯(PU)胶粘剂预聚体;然后以PA(羟基丙烯酸酯树脂)作为PU预聚体的改性剂,制得高固含量的PUA(聚丙烯酸酯改性聚氨酯)胶粘剂。结果表明:当m(改性MDI)∶m(PAPI)=1∶1、n(-NCO)∶n(-OH)=2.2∶1、w(PA)=8%(相对于PU质量而言)和w(丙烯酸羟乙酯)=3%(相对于PU质量而言)时,PUA胶粘剂的综合性能较好。  相似文献   

9.
采用植物油多元醇、聚醚多元醇、异氰酸酯和发泡剂HCFC-141b等为主要原料,制备得到植物油聚氨酯泡沫塑料,探讨了植物油多元醇加入量对泡沫塑料压缩强度、屈服强度、弹性模量和动态粘弹性能影响.结果表明,随着植物油多元醇加入量增加,泡沫塑料的压缩强度和弯曲模量逐渐减小,弹性模量呈先缓慢上升后下降趋势.作为硬泡应用时,植物油多元醇添加量应小于20份,可提高阻尼性能.  相似文献   

10.
In this study, dimer acid (DA) obtained from waste soybean oil was used together with propylene oxide (PO) to obtain novel polyether polyols [prepolymers for polyurethanes (PUs)] through ring‐opening polymerization reaction. The average molecular weight of polyols was estimated by gel permeation chromatography and titration method. The substantial reaction between DA and PO was evident from FTIR and nuclear magnetic resonance spectroscopy. Subsequently, the polyols were reacted with chain extender [ethylene glycol, (EG)] and 4, 4 ‐ Diphenylmethane diisocyanate (MDI) to prepare green PUs. The effect of molar ratio variation of EG and MDI with a fixed amount of polyols was estimated by measuring hydrophobicity and mechanical strength of PUs. The molar ratio such as 1 : 4 : 5.7 of polyol : EG : MDI was found to exhibit maximum hydrophobicity and improved mechanical strength that were comparable with typical PU sample prepared from commercially available polyol, such as polypropylene glycol. FTIR spectroscopic analysis confirmed the chemical changes and possible crosslinking in PUs. Thermalgravimetric analysis and differential scanning calorimetry analysis also showed substantial thermal stability of the green PUs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41410.  相似文献   

11.
Polyol derived from soybean oil was made from crude soybean oil by epoxidization and hydroxylation. Soy-based polyurethane (PU) foams were prepared by the in-situ reaction of methylene diphenyl diisocyanate (MDI) polyurea prepolymer and soy-based polyol. A free-rise method was developed to prepare the sustainable PU foams for use in automotive and bedding cushions. In this study, three petroleum-based PU foams were compared with two soy-based PU foams in terms of their foam characterizations and properties. Soy-based PU foams were made with soy-based polyols with different hydroxyl values. Soy-based PU foams had higher T g (glass transition temperature) and worse cryogenic properties than petroleum-based PU foams. Bio-foams had lower thermal degradation temperatures in the urethane degradation due to natural molecular chains with lower thermal stability than petroleum skeletons. However, these foams had good thermal degradation at a high temperature stage because of MDI polyurea prepolymer, which had superior thermal stability than toluene diisocyanate adducts in petroleum-based PU foams. In addition, soy-based polyol, with high hydroxyl value, contributed PU foam with superior tensile and higher elongation, but lower compressive strength and modulus. Nonetheless, bio-foam made with high hydroxyl valued soy-based polyol had smaller and better distributed cell size than that using low hydroxyl soy-based polyol. Soy-based polyol with high hydroxyl value also contributed the bio-foam with thinner cell walls compared to that with low hydroxyl value, whereas, petroleum-based PU foams had no variations in cell thickness and cell distributions.  相似文献   

12.
The use of polyether polyols is common in polyurethane industry, particularly in soft PU applications. In particular, viscoelastic foams, characterized by slow recovery after compression, are obtained using poly(ethylene oxide) (PEO) polyols. Nanofilled polyols can be used for the production of viscoelastic foams with improved fire resistance properties. The high polarity of polyether polyols is responsible of a poor affinity with the organic modifiers used in commercial organically modified montmorillonite (omMMT). In this work, organically modified montmorillonites were prepared, having an improved affinity with the polyether polyols used for the production of soft PU foams. The montmorillonite was modified by using polyetheramines with different ethyleneoxide/propyleneoxide amounts. A strongly intercalated/exfoliated structure was obtained after mixing the polyol with the omMMT. The viscosity increased by three orders of magnitude and the diffraction angles of the MMT measured by x‐ray analysis decreased to values lower than 1.5°. The intercalated structure was preserved after the curing stage, when the isocyanate was added to the polyol/omMMT. The resulting polyurethane had an irregular open cell structure, and was characterized by a mechanical properties comparable to those of unfilled polyurethane. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Developing vegetable oil‐based polyols for polyurethane manufacturing is becoming highly desirable for both economic and environmental reasons. Most vegetable oils do not bear hydroxyls naturally. The objective of this work was to prepare a new soybean oil‐based polyol with high functionality of hydroxyl groups and built‐in (preformed) urethane bonds. RESULTS: A facile and improved method was developed for the transformation of epoxidized soybean oil into carbonated soybean oil under ambient pressure of CO2 gas, with tetrabutylammonium bromide/calcium chloride as catalyst/co‐catalyst couple. Ring‐opening reaction of the carbonated oil with ethanolamine led to the desired polyol. A one‐pack polyurethane system was prepared via combination of the polyol and a blocked polyisocyanate. The polyol and final polyurethanes were fully characterized, and their physical, mechanical, viscoelastic and electrical insulating properties were studied. CONCLUSION: The application of this newly developed soybean oil‐based polyol for preparation of electroinsulating casting polyurethanes was examined. The prepared soy‐based polyurethanes offered excellent thermal and electrical insulating properties. Also, tunable physical and chemical properties for the final polyurethanes were achieved by replacing part of the soybean oil‐based polyol with poly(propylene glycol) (Mn = 1000 g mol?1). Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Cationic, thermally cured coatings using epoxidized soybean oil   总被引:1,自引:0,他引:1  
Cycloaliphatic epoxy resins are used in coatings and inks because of their exceptionally low viscosity and reactivity with a variety of co-reactants, thus permitting high-solids and zero VOC coatings. The low viscosity of epoxidized soybean oil (ESBO), its reactivity, and relatively low cost make it an inexpensive candidate co-resin in cationic thermally cured coatings and inks using blocked acid catalysts. Formulations with up to 40% ESBO in the epoxy resin blend were investigated. Blending of cycloaliphatic resin with 10% ESBO gave a bake coating with the same results as the standard formulation except pencil hardness was one unit lower when cured for 12 min at 120°C with a heat de-blocked catalyst. The hardness of coatings with ESBO is adjustable by changing the epoxy/polyol ratio, using harder polyols and harder epoxy resins. Coatings Research Institute, 430 W. Forest Ave., Ypsilanti, MI 48197.  相似文献   

15.
蓖麻油聚醚多元醇在聚氨酯软泡中的应用   总被引:1,自引:1,他引:0  
利用双金属催化剂(DMC)制备了相对分子质量在2000~5600之间的聚氨酯(PU)软泡用蓖麻油聚醚多元醇,并通过发泡实验与常用软泡聚醚多元醇H-330进行了性能比较。结果表明,相对分子质量2000的蓖麻油聚醚多元醇制备的泡沫拉伸强度、伸长率和压陷硬度等均优于H-330聚醚,表明蓖麻油聚醚多元醇完全可以取代普通聚醚多元醇用于普通软泡生产。  相似文献   

16.
The effect of intumescent flame retardants on the properties of polyurethane (PU) coatings based on 2 kinds of phosphate ester polyol was studied. Synthesizing polyols, phosphorylation of epoxidized linseed oil with phosphoric acid was performed in the presence of isopropyl alcohol (IPA polyol) or diethylene glycol butyl ether (DGBE polyol). The obtained polyols were characterized by Fourier transform infrared (FTIR) and 31P nuclear magnetic resonance (NMR) spectroscopy. The properties of neat PU coatings based on 2 polyols and those filled with different content (up to 25 wt%) of melamine (Mel), ammonium polyphosphate (APP), and expandable graphite (EG) were studied using thermal gravimetric analysis (TGA), and tensile and cone calorimeter tests. It was found that IPA polyol contained not only phosphate monoesters and diesters, as DGBE polyol, but also phosphate triester and pyrophosphate monoester. Due to this difference, IPA neat and filled coatings had higher tensile characteristics and char residue in a TGA test. Also, the flame retardancy of IPA coatings, compared with that of DGBE coatings, was higher. In a cone calorimeter test, coatings filled with Mel showed a small increase of flame retardancy, but the total smoke release (TSR) of wood samples with coatings decreased noticeably. The effect of APP on the flame retardancy of coatings was higher, but in contrast, the TSR of samples increased with increasing APP content. Even greater decrease of flammability parameters and a simultaneous significant decrease of TSR were shown by the samples with IPA coatings filled with EG.  相似文献   

17.
A novel class of thermosetting resins based on allylated and transesterified epoxidized soybean oil (AE‐ESBO) curable by radical mechanism was developed. The AE‐ESBO was prepared from ESBO by oxirane ring‐opening and then transesterification with allyl alcohol. A family of rubbery to glassy resins was prepared by radical copolymerization of AE‐ESBO with different concentrations of maleic anhydride (MA). Glass transition temperatures (Tg) of these resins ranged from below room temperature to about 130°C based on the amount of MA. In spite of the presence of anhydride groups, water absorption was low <2% even when maleic anhydride was 30% of total weight. Low sol content after extraction and low swelling in toluene indicated high crosslinking density. Tensile moduli of these resins were up to 1.4 GPa and tensile strengths up to 37 MPa. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Commercial availability of fatty acid methyl ester (FAME) from palm oil targeted for biodiesel offers a good feedstock for the production of structurally well‐defined polyols for polyurethane applications. The effect of molecular weight (MW), odd and even carbon numbers, and the linear and branched structure reactants used in the ring‐opening reaction of epoxidized fatty acid methyl ester (E‐FAME) on the properties of polyols was investigated. Conversions of E‐FAME to PolyFAME polyols were confirmed by Fourier transform infrared analysis, oxirane oxygen content, and hydroxyl number. Gel permeation chromatography (GPC) calibrated against polyether polyols as a standard and vapor pressure osmometry were used for MW determination. GPC chromatograms of PolyFAME polyols clearly demonstrated the formation of oligomers during ring‐opening reactions. MW, and odd and even carbon numbers in a structure of linear diols and branched diol used in the syntheses of PolyFAME polyols did not have an effect on crystallinity, glass transition, or melt temperatures measured using Differential scanning calorimetry (DSC). PolyFAME polyols ring‐opened with water, methanol, and 1,2‐propanediol contained secondary hydroxyl groups, whereas PolyFAME polyols ring‐opened with linear diols contained a mixture of primary and secondary hydroxyl groups. It was found that the concentration of primary hydroxyl groups increased significantly by increasing the number of carbons from C2 to C3 in the linear diols. The viscosity of PolyFAME polyols also increased with the MW of linear diols used in the E‐FAME ring‐opening reaction. These findings would be beneficial for formulators in choosing the most cost effective polyols for polyurethane formulations.  相似文献   

19.
A relatively simple method is described for routine determination of hydroxyl values for a wide range of hydroxyl containing compounds including soybean oil polyols, polyols derived from soy meal, polyether polyols and ethylene glycol as well as their blends. This method is based on reacting the hydroxyl compound with hexamethyldisilazane (HMDS) and determining the FTIR peak area of the silylated product at 1,251 cm?1. The method is simple, accurate and reproducible. It is not limited to a specific family of polyol compounds. It does not require any special equipment, hazardous chemicals and can be carried out by non‐technical staff as a rapid and convenient method for quantitative determination of hydroxyl values. An excellent linear correlation was obtained between this spectroscopic method and conventional titration methods for different polyols over a wide range of hydroxyl values. Furthermore, unlike the titration methods the current method is not affected by the presence of acid, base or small amounts of water in the test sample.  相似文献   

20.
Rigid polyurethane foam (RPUF) is prepared from petroleum-based polyols and isocyanate, which consumes a large amount of petroleum. To alleviate the consumption of petroleum, it is necessary to synthesize green and sustainable polyols. However, the greatest disadvantage of RPUF is its flammability. To reduce the risk of fire caused by RPUF, phosphorylated soybean oil polyol (Polyol-P) and phenyl phospho-soybean oil polyol (Polyol-PPOA) were synthesized by ring-opening reactions of epoxy soybean oil with phosphoric acid and phenylphosphonic acid, respectively. A flame-retardant RPUF was prepared via polymeric 4,4-diphenylmethane diisocyanate (p-MDI), which reacted after mixing Polyol-P and Polyol-PPOA with polyether polyol-330N in different proportions. Scanning electron microscopy (SEM) showed that the cell sizes of the RPUF-P and RPUF-PPOA increased first and then decreased and the cell number decreased first and then increased with the increase in the contents of Polyol-P and Polyol-PPOA. Mechanical property tests showed that the compressive strength of the RPUF-P4 reached 0.1 MPa, and the compressive strength of the RPUF-PPOA4 reached 0.07 MPa. The limiting oxygen index values of the RPUF-P4 and RPUF-PPOA4 were 20.9% and 24.3%, respectively. The UL 94 of the RPUFs indicated that the rating of the RPUF-PPOA3 was improved to V-1. The results showed that the flame-retardancy mechanism of the Polyol-P and Polyol-PPOA in the RPUF was based on the charred surface as a physical barrier, which slowed down the decomposition of RPUF and prevented heat and mass transfer between the gas and the condensed phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号