首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel poly(p‐phenylene vinylene) (PPV) derivatives with conjugated thiophene side chains, P1 and P2, were synthesized by Wittig‐Horner reaction. The resulting polymers were characterized by 1H‐NMR, FTIR, GPC, DSC, TGA, UV–Vis absorption spectroscopy and cyclic voltammetry (CV). The polymers exhibited good thermal stability and film‐forming ability. The absorption spectra of P1 and P2 showed broader absorption band from 300 to 580 nm compared with poly[(p‐phenylene vinylene)‐alt‐(2‐methoxy‐5‐octyloxy‐p‐phenylene vinylene)] (P3) without conjugated thiophene side chains. Cyclic voltammograms displayed that the bandgap was reduced effectively by attaching conjugated thiophene side chains. This kind of polymer appears to be interesting candidates for solar‐cell applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Poly(p‐phenylene vinylene) (PPV) derivatives are an important class of conjugated polymers, known for their applications as electroluminescent materials for light‐emitting devices and sensors. These derivatives are highly susceptible to photodegradation by the combined action of oxygen and light. Here, the use of various commercial polymers as protective coatings against the photodegradation of PPV derivatives was explored. Cast films of two similar PPV derivatives, poly[(2‐methoxy‐5‐n‐hexyloxy)‐p‐phenylene vinylene] and poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene], were submitted to photodegradation by exposure to white light under atmospheric conditions in order to verify if the type of side chain (linear or branched) had an effect on the photodegradation. No significant differences in the photodegradation behaviour between the two polymers were noticed. The following commercial polymers were tested as protective coatings for the PPV derivative cast films: 99 and 80% hydrolysed poly(vinyl alcohol) (PVA) and starch. The best results were achieved using coatings of 99% hydrolysed PVA, which increased about 700 times the time necessary for complete degradation of the PPV derivative films. The results show the effectiveness of this coating in minimizing and, possibly, controlling the effects of the photodegradation of PPV derivative films, which can be useful in many applications, e.g. oxygen sensors. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
A series of composite polymer nanoparticles was prepared from poly(N‐vinylcarbazole) (PVK) and poly(2,5‐bistriethoxy‐p‐phenylene vinylene‐alt‐phenylene vinylene) (BTEO–PPV‐alt‐PPV). The nanoparticle sizes were measured to be in the range of 50–80 nm with transmission electron microscopy. The photoluminescence intensity of PVK decreased with the content of BTEO–PPV‐alt‐PPV increasing in the composite polymer nanoparticles because the excited states in PVK were quenched by BTEO–PPV‐alt‐PPV. The emission from BTEO–PPV‐alt‐PPV was enhanced in the composite polymer nanoparticles because of energy transfer from PVK to BTEO–PPV‐alt‐PPV for excitation at the absorption maximum of PVK. The energy‐transfer efficiency was markedly improved in the composite polymer nanoparticles versus the composite polymer films according to emission spectral analyses. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A copolymer of dendronized poly(p‐phenylene vinylene) (PPV), poly{2‐[3′,5′‐bis (2′‐ethylhexyloxy) bnenzyloxy]‐1,4‐phenylene vinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene] (BE‐co‐MEH–PPV), was synthesized with the Gilch route to improve the electroluminescence and photovoltaic properties of the dendronized PPV homopolymer. The polymer was characterized by ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, and electrochemical cyclic voltammetry and compared with the homopolymers poly{2‐[3′, 5′‐bis(2‐ethylhexyloxy) benzyloxy‐1,4‐phenylene vinylene} (BE–PPV) and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH–PPV). Polymer light‐emitting diodes based on the polymers with the configuration of indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/polymer/Ca/Al were fabricated. The electroluminescence efficiency of BE‐co‐MEH–PPV reached 1.64 cd/A, which was much higher than that of BE–PPV (0.68 cd/A) and a little higher than that of MEH–PPV (1.59 cd/A). Photovoltaic properties of the polymer were studied with the device configuration of ITO/PEDOT : PSS/polymer : [6,6J‐phenyl‐C61‐butyric acid methyl ester] (PCBM)/Mg/Al. The power conversion efficiency of the device based on the blend of BE‐co‐MEH–PPV and PCBM with a weight ratio of 1 : 3 reached 1.41% under the illumination of air mass 1.5 (AM1.5) (80 mW/cm2), and this was an improvement in comparison with 0.24% for BE–PPV and 1.32% for MEH–PPV under the same experimental conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Three new soluble polyconjugated polymers, all of which emitted blue light in photoluminescence and electroluminescence, were synthesized, and their luminescence properties were studied. The polymers were poly{1,1′‐biphenyl‐4,4′‐diyl‐[1‐(4‐t‐butylphenyl)]vinylene}, poly((9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)vinylene‐1,4‐phenylene]}) [P(DOF‐PVP)], and poly([N‐(2‐ethyl) hexylcarbazole‐3,6‐diyl]‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)]vinylene‐1,4‐phenylene}). The last two polymers had alternating sequences of the two structural units. Among the three polymers, P(DOF‐PVP) performed best in the light‐emitting diode devices of indium–tin oxide/poly(ethylenedioxythiophene) doped with poly(styrene sulfonate) (30 nm)/polymer (150 nm)/Li:Al (100 nm). This might have been correlated with the balance in and magnitude of the mobility of the charge carriers, that is, positive holes and electrons, and also the electronic structure, that is, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels, of the polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 307–317, 2006  相似文献   

6.
A light‐emitting partially conjugated hyperbranched polymer (2,5‐dimethoxy‐substituted hyperbranched poly(p‐phenylene vinylene), MOHPV) based on rigid fluorescent conjugated segments, 2,5‐dimethoxy‐substituted distyrylbenzene (a derivative of oligo‐poly(p‐phenylene vinylene)), and flexible non‐conjugated spacers, trioxymethylpropane, was synthesized via an A2 + B3 approach. The weight‐average molecular weight was 2.48 × 104 g mol?1. The introduction of two methoxy groups into central rings of the oligo‐poly(p‐phenylene vinylene) imparted to MOHPV better solubility in common organic solvents and processability than its analogues reported in our previous work, especially the fully conjugated hyperbranched polymers. The effect of the molar ratio of monomer A2 to monomer B3 on the molecular weight and molecular weight distribution was investigated. A single‐layer light‐emitting diode was fabricated employing MOHPV as an emitter. A double‐layer light‐emitting diode was also fabricated by doping an electron transport material, 2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, into the emitting layer and inserting a thin layer of tri(8‐hydroxyquinoline)aluminium as electron‐transporting/hole‐blocking layer. A maximum luminance of 1500 cd m?2 at 12 V and a maximum electroluminescence efficiency of 1.38 cd A?1 at 14 mA cm?3, which are approximately 43.5 and 12.9 times greater, respectively, than those of the single‐layer device, were achieved. The synthetic simplicity, excellent solubility and solution processability, and less of a propensity to aggregation make MOHPV a novel type of emitter for polymer light‐emitting displays. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Two luminescent block copolymers (PPVPEO200 and PPVPEO600), composed of poly(p‐phenylene‐vinylene) (PPV) segments with three phenylene vinylene units and poly(ethylene oxide) (PEO) segments with molecular weight of 200 and 600, respectively, have been successfully synthesized. The structures of the copolymers were verified using FTIR, 1H‐NMR, and elemental analysis. Single‐layer polymer light‐emitting electrochemical cells (LEC) devices fabricated on the bases of thin films of PPVPEO600 and on the bases of thin films of blends of PPVPEO200 with additional PEO both demonstrated good electroluminescent (EL) performance with the onset voltage of 2.6 V and EL efficiency of 0.64 cd/A and 0.68 cd/A at 3.2 V, respectively. Thermal analysis shows that the decomposition temperature of PPVPEO600 is about 305°C, which is higher than that of PPVPEO200 and PEO. AFM studies of PPVPEO600 thin films exhibits that the block copolymer self‐assembles to form nanoscale network structures with pseudo‐cross‐linking points, thus accounting for its high thermal stability and good EL performance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1118–1125, 2007  相似文献   

8.
The effects of platinum metal nanoparticles on a conjugated polymer were investigated by monitoring the electronic structures and measuring the electrical properties of poly(p‐phenylene vinylene) (PPV) and PPV/Pt nanocomposites films. Enhanced current density in PPV/Pt nanocomposite films was obtained by the incorporation of Pt nanoparticles into the conjugated polymer PPV. This result agrees well with our observation of an increase in the electron affinity and an increase in roughness with increasing Pt nanoparticle content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A series of novel porphyrin‐grafted poly (phenylene vinylene) derivatives, Porp‐RO‐PPV, were synthesized by a simple two‐step method. These copolymers contain conjugated poly(phenylene vinylene) derivatives as polymer backbone and covalently linked porphyrin units as side chain, which were confirmed by FTIR and 1H NMR, and used for photovoltaic devices. The thermal, optical properties and sensitizing effect, and photovoltaic properties have been investigated. The emission spectra of Porp‐RO‐PPV copolymers revealed the existence of strong energy transfer from PPV backbone to porphyrin units. The energy conversion efficiency (ηe) of photovoltaic devices based on Porp‐RO‐PPV+PCBM reached 0.33% (78.2 mW/cm2, AM1.5) and porphyrin units in the copolymers showed good sensitizing effect at low concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polyphenylenes consisting of nitrophenylene and didodecyloxy‐p‐phenylene units have been synthesized by Pd‐catalyzed organometallic polycondensation. The polymers showed good solubility and had number–average molecular weights (Mn) of 13,000–37,000. Their spin‐coated films showed fairly high dielectric constants (ε) of 3.75–6.36. The polymers were electrochemically active with electrochemical reduction peaks in the range of ?1.72 to ?1.99 V versus Ag+/Ag in an acetonitrile solution of [NEt4]BF4 (0.10M). The polymer composed of 2,3′‐dinitrobiphenyl and didodecyloxy‐p‐phenylene units showed thermotropic liquid crystalline phase at about 240°C. Cast films of the polymer had a birefringent phase at room temperature, suggesting self‐assembly of the polymer in the solid. XRD studies revealed that the polymers assumed an ordered structure assisted by aggregation of the long alkoxy side chains in the solid. The polymer main chain in the cast film is considered to be aligned parallel with respect to the surface of substrates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Acyclic diene metathesis polymerization using ruthenium–carbene catalysts affords defect‐free, high molecular weight poly(arylene vinylene)s containing all trans olefinic double bonds. The exclusive end‐functionalization in the resultant poly(fluorene vinylene)s or poly(phenylene vinylene)s can be attained by treating the vinyl end groups using a molybdenum–alkylidene catalyst/reagent (through olefin metathesis) followed by addition of various aldehydes (Wittig‐type coupling). Some of these end‐modified conjugated materials display unique emission properties, which are different from the original ones, through an interaction (energy transfer or structural change in the excited state) between the conjugated main chain and the end groups [oligo(thiophene)s, F‐BODIPY, etc.]. Exclusive synthesis of well‐defined, all‐trans end‐functionalized oligo(2,5‐dialkoxy‐1,4‐phenylene vinylene)s [(oligo(phenylene vinylene), alkoxy = O(CH2)2OSii Pr3, up to 31 repeat units] is demonstrated by adopting a stepwise synthetic approach (olefin metathesis and the subsequent Wittig‐type cleavage). It is clearly demonstrated that their optical properties (especially the fluorescence spectra including photoluminescence quantum yields) are strongly affected by the end groups as well as the conjugation repeat units.  相似文献   

12.
The new poly(arylenevinylene) derivative composed naphthalene phenylene vinylene backbone was developed. The theoretical calculation showed that the model compound of the obtained polymer was highly distorted between the stryl and naphthalene units as well as between the backbone and fluorene side units. The polymer was synthesized by the palladium catalyzed Suzuki coupling reaction with 2,6‐(1′,2′‐ethylborate)‐1,5‐dihexyloxynaphtalene and 1,2‐bis(4′‐bromophenyl)‐1‐(9″,9″‐dihexyl‐3‐fluorenyl)ethene. The structure of the polymer was confirmed by 1H NMR, IR, and elemental analysis. The weight–average molecular weight of the polymer is 29,800 with the polydispersity index of 1.87. The new polymer showed good thermal stability with high Tg of 195°C. The bright blue fluorescence (λmax = 475 nm) was observed both in solution and film of new polymer with naphthalene phenylene vinylene backbone. Double layer LED devices with the configuration of ITO/PEDOT/polymer/LiF/Ca/Al showed a turn‐on voltage at around 4.5 V, the maximum luminance of 150 cd/m2, and the maximum efficiency of 0.1 cd/A. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A novel alternating copolymer, poly{[2,5‐di(2‐(2‐ethoxy ethoxy)ethoxy)‐1,4‐phenylene vinylene]‐alt‐1,4‐[phenylene vinylene]}, has been synthesized through the Wittig condensation as electroluminescent material. In this copolymer, one component is phenylene vinylene with flexible oligo(ethylene oxide) side chain that facilitates ion transportation and phase miscibility between nonpolar and polar part of composite luminescent layer, and another is a rigid phenylene vinylene moiety to improve luminescent quantum efficiency and tune color. The copolymer shows good solubility and thermal stability for device fabrication compared to poly(phpeylene vinylene)(PPV). The band gap value of copolymer is between those of corresponding homopolymers, which indicates that alternating copolymerization is a suitable way to obtain luminescent polymer with desired band gap. The maximum wavelength of photoluminescence of copolymer is 539 nm (yellowish‐green). The HOMO and LUMO energy levels obtained by cyclic voltammetry measurement indicate that the electron injection ability of copolymer has been greatly improved compared with that of the PPV. A more balanced carrier injection and higher quantum efficiency are proved by electroluminescent properties of corresponding light‐emitting devices. The turn‐on voltage of LEC device (ITO/copolymer + PEO + LiClO4/Al) is found to be 2.3 V, with current comparative to LED (ITO/copolymer/Al) at 9.5 V. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1350–1356, 2003  相似文献   

14.
A series of triarylaminooxadiazole‐containing tetraphenylsilane light emitting polymer (PTOA) and poly(2‐methoxy, 5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene‐vinylene) (MEH‐PPV) based white light emitting polymer devices (PLEDs) were fabricated to study blue and orange–red emitter composition and light emitting layer processing effects on white emission electroluminescence properties. Color purity, current turn‐on voltage, brightness, and current efficiency were strongly determined by MEH‐PPV content and the thin film processing condition. The intensity of PTOA blue emission was equal to that of MEH‐PPV orange–red emission when the device was fabricated by a polymer composite film containing 10 wt % of MEH‐PPV. Color purity [Commission Internationale de L'Eclairage (CIEx,y) coordinates (0.26,0.33)] was nearly white emission under applied 8 V. The brightness and current efficiency of PTOA‐MEH‐PPV composite film based devices increased as MEH‐PPV content increased. Furthermore, white emission blue shifted with increasing spin‐rate of thin film coating and applied voltage. Low turn‐on voltage, high current density, and high brightness were obtained for the device fabricating with light emitting layer coating with high spin‐rate. Moreover, low current efficiency was obtained for the PLED with a thinner light‐emitting layer. A white emission CIE (0.28,0.34) was obtained for PTOA‐MEH‐PPV based white PLED. White PLED brightness and efficiency can be as high as 700 cd/m2 and 0.78 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
Nitrated poly(oxa‐p‐phenylene‐3,3‐phthalido‐p‐phenylene‐oxa‐p‐phenylene‐ oxy‐phenylene) (PEEK‐WC) with various average degrees of substitution was obtained by reaction with several nitrating agents. By working under controlled reaction conditions, little degradation of the parent polymer is observed. The nitro derivatives of PEEK‐WC show a high thermal stability, and are able to form membranes by means of phase inversion technique. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1037–1045, 2001  相似文献   

16.
Alternating copolymers containing bipyridine and phenylene vinylene were synthesized through a Wittig condensation reaction of their corresponding diphosphonium salts and dialdehydes. The molecular weights of the resulting polymers were relatively low because of the low solubility in the reaction solvents. The optical properties of the polymers were substantially affected by the repeating units of phenylene vinylene. The absorption spectra of the copolymers in the solid state exhibited a bathochromic shift compared to those carried out in solution. The effective conjugation length could be extended with the addition of Cu2+, Ni2+, and Zn2+ ions into the polymer solutions in a 1 : 1 ratio of the bipyridine to the phenylene vinylene units. All of the polymer solutions behaved as a turn‐off fluorescent chemosensor upon the addition of a variety of the metal ions. The sensing behavior to various metal ions revealed that the polymers were highly sensitive to the Cu2+, Ni2+, and Zn2+ ions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42795.  相似文献   

17.
Two new π‐conjugated polymers, namely poly(p‐phenylenevinylene‐1,3,4‐oxadiazole) (PPVO) and poly(p‐(nitro‐phenylene)vinylene‐1,3,4‐oxadiazole) (PNPVO), were synthesized and characterized. The Gilch polymerization technique, using dihalo derivatives of 1,3,4‐oxadiazoles, was employed to synthesize them under mild reaction conditions. The macromolecules exhibit good solubility in dimethylformamide, formamide and dimethyl sulfoxide and thus effectively address the insolubility issues associated with many oxadiazole derivatives for device fabrication. They show bright luminescence in the blue‐green region of the electromagnetic spectrum and have optical band gaps suited for an emissive layer in organic light‐emitting devices. PPVO and PNPPO show good non‐linear optical responses also in solution phase, with third‐order nonlinear susceptibilities of the order of 10?12esu. Interestingly, they exhibit good antimicrobial characteristics under examination with Escherichia coli and Staphylococcus. The results prove that these macromolecules are ideal materials to use as emissive layers in various light‐emitting devices and NLO applications. The excellent antimicrobial activity can be utilized for their applications in clinical and healthcare areas. © 2016 Society of Chemical Industry  相似文献   

18.
We present the electrical and optical characteristics of a single‐ion transport light‐emitting electrochemical cell (SLEC) based on poly(p‐phenylene vinylene) (PPV) derivative containing aryl‐substituted oxadiazole in the backbone (MEH‐OPPV). Ionized polyurethane–poly(ethylene glycol) (PUI) used as polymer electrolyte is introduced into the active layer of the SLEC. The turn‐on voltage of the SLEC is about 3 V according to its current density–voltage (J–V) characteristics. The response time of the SLEC is less than 10 ms, lower than that of normal LECs by two orders of magnitudes roughly. The reasons of the quick response for the SLEC are discussed in the article. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4253–4255, 2006  相似文献   

19.
Synthesis of a polyfluorene/poly(p‐phenylene vinylene) derivative, the Poly [(9,9′‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] (LaPPS 42) was performed following Wittig and Suzuki routes. Polyfluorenes and derivatives have been used in electroluminescent devices, and the synthesis described here has the advantage in pave the way to get distinct structures having different emission spectra. An extensive study of its electrochemical, thermomechanical, optical, and structural properties was carried out, as well as its application in electroluminescent devices. Polymer light‐emitting diodes (PLEDs) and polymer light‐emitting electrochemical cells (PLECs) were built using LaPPS 42 as active layer, and their electric and optical characterizations confirm they have a potential as active element in electroluminescent devices. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42579.  相似文献   

20.
The synthetic procedure and the characterization of the new amino derivatives of poly(oxa‐p‐phenylene‐3,3‐phtalido‐p‐phenylene‐oxa‐p‐phenilene‐oxy‐phenylene) (PEEK‐WC) with various average degrees of substitution, is reported. The amino PEEK‐WC was extensively characterised by using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis, differential scanning calorimeter, scanning electron microscopy, Elemental analyses, NMR, and viscosity measurements. The amino PEEK‐WC shows different solubility in some solvents in comparison with the parent polymer, good thermal stability and is able to form membrane by means of the phase inversion technique. Amino PEEK‐WC results to be quite reactive and can lead to further modification. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号