共查询到20条相似文献,搜索用时 15 毫秒
1.
Both poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) are fully biodegradable polyesters. The disadvantages of poor mechanical properties of PLA limit its wide application. Fully biodegradable polymer blends were prepared by blending PLA with PBAT. Crystallization behavior of neat and blended PLA was investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Experiment results indicated that in comparison with neat PLA, the degree of crystallinity of PLA in various blends all markedly was increased, and the crystallization mechanism almost did not change. The equilibrium melting point of PLA initially decreased with the increase of PBAT content and then increased when PBAT content in the blends was 60 wt % compared to neat PLA. In the case of the isothermal crystallization of neat PLA and its blends at the temperature range of 123–142°C, neat PLA and its blends exhibited bell shape curves for the growth rates, and the maximum crystallization rate of neat PLA and its blends all depended on crystallization temperature and their component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
2.
In this article, the spherulitic growth rate of neat and plasticized poly(lactic acid) (PLA) with triphenyl phosphate (TPP) was measured and analyzed in the temperature range of 104–142°C by polarizing optical microscopy. Neat PLA had the maximum value of 0.28 μm/s at 132°C, whereas plasticized PLA had higher value than that of neat PLA, but the temperature corresponding to the maximum value was shifted toward lower one with increasing TPP content. The isothermal crystallization kinetics of neat and plasticized PLA was also analyzed by differential scanning calorimetry and described by the Avrami equation. The results showed for neat PLA and its blends with various TPP contents, the average value of Avrami exponents n were close to around 2.5 at two crystallization temperatures of 113 and 128°C, the crystallization rate constant k was decreased, and the half‐life crystallization time t1/2 was increased with TPP content. For neat PLA and its blend with 15 wt % TPP content, the average value of n was 2.0 and 2.3, respectively, the value of k was decreased, and the value of t1/2 was increased with crystallization temperature (Tc). Further investigation into crystallization activation energy ΔEa of neat PLA and its blend with 15 wt % TPP showed that ΔEa of plasticized PLA was increased compared to neat PLA. It was verified by wide‐angle X‐ray diffraction that neat PLA and its blends containing various TPP contents crystallized isothermally in the temperature range of 113–128°C all form the α‐form crystal. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
3.
The nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers modified with poly(lactic acid) (PLA) were investigated with differential scanning calorimetry, and a crystal morphology of the samples was observed with scanning electron microscopy. Waste PET (P100) obtained from postconsumer water bottles was modified with a low‐molecular‐weight PLA. The PET/PLA weight ratio was 90/10 (P90) or 50/50 (P50) in the modified samples. The nonisothermal melt‐crystallization kinetics of the modified samples were compared with those of P100. The segmented block copolymer structure (PET‐b‐PLA‐b‐PET) of the modified samples formed by a transesterification reaction between the PLA and PET units in solution and the length of the aliphatic and aromatic blocks were found to have a great effect on the nucleation mechanism and overall crystallization rate. On the basis of the results of the crystallization kinetics determined by several models (Ozawa, Avrami, Jeziorny, and Liu–Mo) and morphological observations, the crystallization rate of the samples decreased in the order of P50 > P90 > P100, depending on the amount of PLA in the copolymer structure. However, the apparent crystallization activation energies of the samples decreased in the order of P90 > P100 > P50. It was concluded that the nucleation rate and mechanism were affected significantly by the incorporation of PLA into the copolymer structure and that these also had an effect on the overall crystallization energy barrier. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
4.
Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent 下载免费PDF全文
To improve the crystallization ability of poly(lactic acid) (PLA), a novel nucleating agent with a benzoyl hydrazine compound was used in this study. The crystallization behaviors of PLA/talc and PLA/bibenzoylhydrazinepropane (BBP) with or without poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry (DSC) and polarized optical microscopy. The DSC curves showed that the crystallization temperature and crystallinity of PLA/BBP (PBBP) was higher than that of PLA/talc. With the addition of PEG, a synergistic effect was found. According to the results of nonisothermal crystallization kinetics, the values of F(T) of PBBP0.5PEG5 were usually smaller than those of PTa3PEG5, so the nucleation efficiency of BBP was much better than that of talc. From a polarized optical microscopy photo, it was easy to determine that the nucleation density of BBP was higher than that of PTa3PEG5, and the spherulitic diameter increased linearly with the crystallization time no matter the impingements. The spherulitic growth rate of PBBP0.5PEG5 was faster than that of PTa3PEG5, and the induction time of PBBP0.5PEG5 was the shortest among all of the samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41367. 相似文献
5.
Effect of aliphatic diacyl adipic dihydrazides on the crystallization of poly(lactic acid) 下载免费PDF全文
A series of aliphatic diacyl adipic dihydrazides (ADHs) with different alkyl moieties were synthesized by the reaction between adipic dihydrazide and acyl chloride. Then these ADHs were solution blended with PLA respectively and were evaluated as nucleating agents. Through the investigation of nonisothermal and isothermal crystallization, it was found that both the crystallization rate and the crystallinity of PLA could be enhanced by adding only 1 wt % of ADHs. Especially for ADH‐Oc (ADH‐Octyl), the crystallization rate of PLA increased about 4 times at 105°C. Optical morphology showed that and the size of PLA spherulites decreased and the nucleation density increased with the existence of ADH‐Oc. Meanwhile, the crystal structure of PLA were not discerniblly affected after the addition of ADHs as found by wide‐angle X‐ray diffraction. Thus, this study suggested these ADHs compounds are simple and potential nucleating agents to enhance crystallization ability of PLA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42028. 相似文献
6.
This article investigated the crystallization kinetics, melting behavior, and morphologies of poly(butylene succinate)(PBS) and its segmented copolyester poly(butylene succinate)‐block‐poly(propylene glycol)(PBSP) by means of differential scanning calorimetry, polarized light microscopy, and wide angle X‐ray diffraction. Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the Avrami equation modified by Jeziorny, and the model combining Avrami equation and Ozawa equation were employed. The results showed that the introduction of poly(propylene glycol) soft segment led to suppression of crystallization of PBS hard segment. The melting behavior of the isothermally and nonisothermally crystallized samples was also studied. Results showed that the isothermally crystallized samples exhibited two melting endotherms, whereas only one melting endotherm was shown after nonisothermal crystallization. The spherulitic morphology of PBSP and wide angle X‐ray diffraction showed that the polyether segments were excluded from the crystals and resided in between crystalline PBS lamellae and mixed with amorphous PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
Quantitative analysis of isothermal crystallization kinetics of PLA/clay nanocomposite and PLA/clay/regenerated cellulose fiber (RCF) hybrid composite has been conducted. The crystallization rate constant (k) according to Avrami equation was higher in PLA/clay nanocomposite than in PLA/clay/RCF hybrid composite at the same crystallization temperature. The equilibrium melting temperature obtained by Hoffman–Weeks equation was almost same in both composites, whereas stability parameter was greater in hybrid composite than in nanocomposite. Activation energy of hybrid composite for crystallization was larger than that of nanocomposite. The value of nucleation parameter (Kg) and surface free energy (se) of hybrid composite were larger than nanocomposite, indicating that hybrid composite has a less folding regularity than nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
8.
A series of 1,3,5‐trialkyl‐benzenetricarboxylamides (BTA‐Rs) with different side‐chain lengths of n‐alkyl are synthesized to use as nucleating agents of poly (lactic acid) (PLA). Crystallization rate of PLA is detailed discussed in nonisothermal melt‐crystallization with addition of the synthesized nucleating agents. Among these BTA‐Rs, BTA‐n‐butyl (BTA‐nBu) shows the most excellent nucleation ability for PLA. The influences of BTA‐nBu on the nonisothermal melt‐crystallization and cold‐crystallization from the glassy state, isothermal crystallization, crystalline structure, and spherulite morphology of PLA are investigated. It is found that 0.8 wt % is the optimal weight fraction of BTA‐nBu to improve the crystallization of PLA. In the case of isothermal melt‐crystallization from melt, the addition of BTA‐nBu shortens the crystallization half‐time and speeds up the crystallization rate of PLA with no discernible effect on the crystalline structure. Besides, BTA‐nBu nucleated PLA exhibits smaller spherulites size and larger nucleation density than that of pure PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1328‐1336, 2013 相似文献
9.
The isothermal crystallization kinetics of PLA/fluoromica nanocomposites was studied. Three types of synthetic mica at three concentrations (2.5, 5.0, and 7.5 wt % mica) were used and the effect of these micas on the crystallization and thermal properties of PLA was investigated by differential scanning calorimetry (DSC). The Avrami and Hoffman‐Weeks equations were used to describe the isothermal crystallization kinetics and melting behavior. Addition of these micas to the PLA matrix increased the crystallization rate, and this effect depended on the mica type and concentration. While the nonmodified Somasif ME‐100 exerted the smallest effect, the effect observed for the organically modified Somasif MPE was the most pronounced. The lower half‐time of crystallization t1/2 was around 3 min for the PLA/Somasif MPE nanocomposites containing 7.5 wt % of filler at 90°C, which is about 16 min below that found for neat PLA. The equilibrium melting temperature ( ) of PLA were estimated for these systems, showing an increase in the composites and an increase with increasing loading, except for PLA/Somasif MPE, in which the increase of the mica content decreased about 5°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40322. 相似文献
10.
Mechanical properties of poly(lactic acid) (PLA) blended with a small amount of dendritic hyperbranched polymer (DHP) were investigated. Effects of DHP and starch on mechanical properties of PLA were compared. DHP significantly improved tensile strength and elongation at break of PLA. A small amount of starch in PLA slightly improved PLA's elongation, but had no effect on tensile strength. Isothermal crystallization kinetics of PLA blended with DHP and starch were also studied. Both DHP and starch acted as nucleation agents and significantly increased crystallization rate and crystallinity of PLA. Copyright © 2004 Society of Chemical Industry 相似文献
11.
The effect of zinc phenylphosphonate (PPZn) on the crystallization behavior of poly(l ‐lactide) (PLLA) was investigated using differential scanning calorimetry (DSC) and Polarized Optical Microscopy (POM) measurements. The non‐isothermal cold crystallization results showed that the addition of PPZn obviously decreased the cold crystallization temperature of PLLA and increased the degree of crystallinity of PLLA. The isothermal crystallization kinetics results showed that the crystallization rate of PLLA with small amount of PPZn was much higher than that of neat PLLA, and the half‐time (t1/2) of PLLA/PPZn sample is far less than that of neat PLLA. As an effective nucleating agent, PPZn particles had also some influence on nucleation mechanism and crystal growth of PLLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2744–2752, 2013 相似文献
12.
Nonisothermal crystallization behaviors of biodegradable double crystalline poly(butylene succinate)‐poly(ethylene glycol) multiblock copolymers 下载免费PDF全文
Nonisothermal crystallization behaviors of both poly(butylene succinate) (PBS) and poly(ethylene glycol) (PEG) segments within PBS‐PEG (PBSEG) multiblock copolymers were investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization kinetics of both PBS and PEG segments were analyzed by Avrami, Ozawa, and Mo methods. The results showed that both of Avrami and Mo methods were successful to describe the nonisothermal crystallization kinetics of PBS and PEG segments. The results of crystallization kinetics indicated that the crystallization rate of PBS segment decreased with PBS segment content and/or LPBS, while that of PEG segment decreased with Mn,PEG or FPEG. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40940. 相似文献
13.
The spherulitic morphology of pure poly(L ‐lactide) (PLLA) was investigated with polarized optical microscopy as a function of the crystallization temperature and molecular weight. After being melted at 210°C for 3 min, samples were cooled quickly to designated temperatures for isothermal crystallization. It was shown for the first time that a clear banding‐to‐nonbanding morphological transition took place at a critical temperature for PLLA with a number‐average molecular weight of 86,000. With the increasing molecular weight of the material, the spherulite growth rates decreased notably, and the band spacing decreased significantly. On the basis of the main‐chain chirality in PLLA and the observation of a nonbanded spherulitic morphology in a certain temperature region, it was suggested that the crystallization temperature might have an effect on the relationship between the sense of lamellar twisting and the main‐chain chiral structure in PLLA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
14.
Shuichi Sato Daiki Gondo Takayuki Wada Shinji Kanehashi Kazukiyo Nagai 《应用聚合物科学杂志》2013,129(3):1607-1617
The effects of 60 organic solvent on poly(lactic acid) (PLA) were systematically investigated using the Hansen solubility parameter (HSP). The hydrogen bonding solubility parameter accurately reflects the solubility of PLA films using HSP but it depends on hydrogen bonding, as well as dispersion and polar parameters. The PLA films immersed in organic solvent became cloudy and showed no changes in chemical structure. However, solvent‐induced crystallization of the PLA films was observed. Crystalline structures do not dependent on the organic solvent but on the degree of swelling. The organic solvent‐induced crystallization formed a crystallized mixture of a‐ and β‐forms. The density of the crystalline PLA films was lower than that of amorphous PLA films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
15.
The crystallization and multiple melting behavior of poly(phenylene sulfide) (PPS) and its blends with amorphous thermoplastic bisphenol A polysulfone (PSF) and phenolphthalein poly(ether ketone) (PEK-C), crystalline thermoplastic poly(ether ether ketone) (PEEK), and thermosetting bismaleimide (BMI) resin were investigated by a differential scanning calorimeter (DSC). The addition of PSF and PEK-C was found to have no influence on the crystallization temperature (Tc) and heat of crystallization (ΔHc) of PPS. A significant increase in the value of Tc and the intensity of the Tc peak of PPS was observed and the crystallization of PPS can be accelerated in the presence of the PEEK component. An increase in the Tc of PPS can also be accelerated in the BMI/PPS blend, but was no more significant than that in the PEEK/PPS blend. The Tc of PPS in the PEEK/PPS blends is dependent on the maximum temperature of the heating scans and can be divided into three temperature regions. The addition of a second component has no influence on the formation of a multiple melting peak. The double melting peaks can also be observed when PPS and its blends are crystallized dynamically from the molten state. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 637–644, 1998 相似文献
16.
Isothermal crystallization kinetics and spherulite morphologies of poly(lactic acid)/ethylene acrylate copolymer blends 下载免费PDF全文
Isothermal crystallization kinetics and spherulite morphologies of partially immiscible blends of poly(lactic acid) (PLA) and ethylene acrylate copolymer (EAC) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. The DSC data obtained was analyzed using the Avrami equation. Crystallization kinetics of PLA from the melt was strongly influenced by the blend composition and the crystallization temperature. At a given crystallization temperature, the overall crystallization rate value was greater in the blends than in PLA suggesting that the presence of EAC enhanced crystallization of PLA. Polarized optical micrographs showed that the crystallization of PLA initially took place at the PLA/EAC interface. At high EAC content (>1 wt %), EAC domains acted as hindrance to crystallization reducing the overall crystallization rate of PLA in the blends. Based on the DSC analysis, the crystallization rate was maximum when PLA blend with 1 wt % EAC was isothermally crystallized at 103 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45487. 相似文献
17.
Weijie Guo Jun Shao Xinxin Ye Peng Sun Chunfeng Meng Zhaolei Li Zhiping Zheng Chao Yan 《Polymer International》2019,68(2):271-276
In order to explore the origin of the higher melting point of poly(lactic acid) (PLA) stereocomplex crystal (SC) than that of homo‐crystal (HC), the equilibrium melting point () differential between SC and HC was determined using the Hoffman–Weeks method. The results showed that, for PLA samples with Mn around 16, 20 and 65 kg mol?1, the differential between SC and HC is around 36, 42 and 55 °C, respectively. Thus, the higher melting point of SC compared to HC does not stem from differential only. For PLA samples with lower Mn, the supercooling differential between poly(l ‐lactic acid) (PLLA)/poly(d ‐lactic acid) (PDLA) blends and PLLA is smaller than that with higher Mn, which means chain diffusion behavior is crucial for SC formation in PLLA/PDLA blends. The fact that the SC adopts the intermolecular parallel arrangement rather than the adjacent chain folding is verified by the greater slope of the melting point of SC versus crystallization temperature fitting curve when Mn is relative higher. © 2018 Society of Chemical Industry 相似文献
18.
Effect of processing conditions on crystallization behavior and mechanical properties of poly(lactic acid) staple fibers 下载免费PDF全文
Within this study, the applicability of Raman spectroscopy to characterize the crystallinity of PLA staple fibers was evaluated. The influence of the fiber alignment on the possibility to detect crystallinity by using Raman spectroscopy was studied. PLA staple fibers were produced by melt spinning by varying both draw temperature and draw ratio. Systematic interrelationships between the processing parameters of PLA staple fibers and the degrees of crystallinity and the cold crystallization enthalpies were established. Raman spectroscopy showed that the carbonyl stretching band of Raman spectra measured in fiber axis and parallelly polarized was not sensitive to detect crystallinity. However, for perpendicularly polarized measurements, a higher sensitivity was observed. With increasing degree of crystallinity, a reduction of the band width of the normalized carbonyl stretching band was found. The morphology affected the mechanical properties significantly. Increased draw ratio resulted in increased tensile strength and decreased elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42432. 相似文献
19.
Relationship between the crystallization behavior of poly(ethylene glycol) and stereocomplex crystallization of poly(L‐lactic acid)/poly(D‐lactic acid) 下载免费PDF全文
Chunyan Luo Minrui Yang Wei Xiao Jingjing Yang Yan Wang Weixing Chen Xia Han 《Polymer International》2018,67(3):313-321
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry 相似文献
20.
Chunrui Sheng Tongping Zhang Yuan Yuan Lijuan Zhou Yongxin Duan Jianming Zhang 《Polymer International》2014,63(7):1270-1277
The miscibility and effect of physical aging on the crystallization behavior of poly(l ‐lactic acid) (PLLA)/poly(3‐hydroxybutyrate) (PHB) blends with a small amount of PHB (≤10 wt%) have been investigated using differential scanning calorimetry and Fourier transform infrared spectroscopy. It is found that the miscibility of PLLA/PHB blends with a very small percentage of PHB can be modulated by varying the molecular weight of the PHB. That is, a PLLA/PHB blend with low‐molecular‐weight PHB is miscible, whereas that with high‐molecular‐weight PHB is immiscible. It is found that physical aging at temperatures far below the glass transition temperature can promote the cold crystallization kinetics of PLLA in PLLA/PHB blends with high‐molecular‐weight PHB rather than in those with low‐molecular‐weight PHB. These findings suggest that the effect of physical aging on the crystallization behavior of the main component in a crystalline/crystalline blend with a small percentage of the second component is strongly dependent on the miscibility of the blend system. Enhanced chain mobility of PLLA in the interface region of PLLA matrix and PHB micro‐domains is proposed to explain the physical aging‐enhanced crystallization rate in immiscible PLLA/PHB blends with high‐molecular‐weight PHB. © 2013 Society of Chemical Industry 相似文献