首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel composite material consisting of polypropylene (PP) fibers in a random poly(propylene‐co‐ethylene) (PPE) matrix was prepared and its properties were evaluated. The thermal and mechanical properties of PP–PPE composites were studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) with reference to the fiber concentration. Although, by increasing PP fiber concentration in PPE, no significant difference was found in melting and crystallization temperatures of the PPE, the storage, and the tensile and flexural modulus of the composites increased linearly with fiber concentrations up to 50%, 1.5, 1.0, 1.3 GPa, respectively, which was approximately four times higher than that for the pure PPE. There is a shift in glass transition temperature of the composite with increasing fiber concentration in the composite and the damping peak became flatter, which indicates the effectiveness of fiber–matrix interaction. A higher concentration of long fibers (>50% w/w) resulted in fiber packing problems, difficulty in dispersion, and an increase in void content, which led to a reduction in modulus. Cox–Krenchel and Haplin–Tsai equations were used to predict tensile modulus of random fiber‐reinforced composites. A Cole–Cole analysis was performed to understand the phase behavior of the composites. A master curve was constructed based on time–temperature superposition (TTS) by using data over the temperature range from −50 to 90°C, which allowed for the prediction of very long and short time behavior of the composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2260–2272, 2005  相似文献   

2.
Polypropylene/wood fiber composites were prepared at three different temperatures: 170°C, 180°C, and 190°C. The surface of wood fibers was modified through the use of silane coupling agents and/or coating with polypropylene or maleated polypropylene. The fiber coating was performed by propylene polymerization in the presence of wood fibers or by immersion in an o-dichlorobenzene polypropylene (or maleated polypropylene) solution. Tensile and three-point bending tests were performed in order to evaluate the adhesion between matrix and wood fibers. Evidence shows that 180°C is the best mixing temperature, while the use of vinyl-tris (2-methoxy ethoxy) silane with or without maleated polypropylene coating is the best surface treatment. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1227–1235, 1997  相似文献   

3.
Short ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared in a twin‐screw extruder followed by injection molding. The experimental results showed that both the strength and the modulus of the composites increase considerably with increasing RF content. The tensile strength and flexural strength are as high as 67 and 80 MPa by the incorporation of ramie up to 30 wt %. To the best of our knowledge, this is one of the best results for short natural fiber‐reinforced PP composites. However, the preparation method in this study is more simple and economic. This short RF‐reinforced PP composites extend the application field for short‐nature fiber‐reinforced PP composites. Morphological analysis revealed that it is the high aspect ratio of the fiber and good interfacial compatibility that result in the high performance of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Solvent‐free acetylation of microfibrillated cellulose was carried out in order to improve their hydrophobicity. All the samples were filled with low‐density polyethylene. The morphology, mechanical properties, and water uptake of the ensuing composites were investigated. An excessive reaction time leads to degradation of the fibers, which was observed by scanning electron microscopy and fiber quality analysis. The acetylation treatment did not improve the mechanical properties of composites but extensively decreased the moisture absorption of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44933.  相似文献   

5.
In this work, the effects of nanoclay (1–4 wt %) and coupling agent (2 and 4 wt %) loading on the physical and mechanical properties of nanocomposites are investigated. Composites based on polypropylene (PP), bagasse flour, and nanoclay (montmorillonite type) was made by melt compounding and then compression molding. When 1–3 wt % nanoclay was added, the tensile properties increased significantly, but then decreased slightly as the nanoclay content increased to 4%. The impact strength was 6% lower by the addition of 1 wt % nanoclay, it was decreased further when the nanoclay content increased from 1 to 4%. Finally, the water absorption of PP/bagasse composites was lowered with the increase in nanoclay content. Additionally, the coupling agent, 4 wt % MAPP, improved the mechanical and physical properties of the composites more than the 2 wt % MAPP. From these results, we can conclude that addition of nanoclay enables to achieve better physical and mechanical properties in conventional composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
We investigated the mechanical and physical characteristics of composites composed of polyacetal [alternatively called polyoxymethylene (POM)] and cellulose fiber (CelF) derived from wood pulp [10–52 wt % (9.3–50.1 vol %)] without any fiber surface treatment. The modulus, deflection temperature under load, and thermal conduction coefficient of the POM/CelF composites were effectively enhanced with increasing CelF content, and the composites had an advantage of specific modulus compared to glass fiber (GF)‐filled POM. The flexural modulus of POM/CelF 40 wt % (38.2 vol %) was measured to be about 6 GPa, which was comparable to that of POM/GF 20 wt % (12.1 vol %). In the composites, the CelFs were distributed randomly as monofilaments, and the debonding of the interface between the fibers and POM matrices in the fracture faces was confirmed as less by scanning electron microscopy observation. The POM/CelF composites possessed lower specific wear rates than the POM/GF composites, and they had damping behaviors near that of neat POM. No clear dependence of the melt flow index of the base POM on these characteristics was observed, except on Charpy impact strength. The composites studied here were unique in their performance and ability to be designed in accordance with specific demands, and they could be potential replacements for mineral‐filled and GF‐filled POM composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The effect of filler content and size on the mechanical properties of a new type of wood-based filler, oil palm wood flour (OPWF), in polypropylene (PP) was investigated. Four sizes of OPWF filler at different filler loadings were compounded using a twin screw compounder. All sizes of filler showed a similar trend of declining mechanical properties with increasing filler content. In terms of size, the composites filled with larger-sized filler showed higher modulus, tensile and impact strengths, particularly at high filler loadings. The OPWF used in this study was not treated with any coupling agent.  相似文献   

8.
Sisal fibers were used for the reinforcement of a polypropylene (pp) matrix. Composites consisting of polypropylene reinforced with short sisal fibers were prepared by melt‐mixing and solution‐mixing methods. A large amount of fiber breakage was observed during melt mixing. The fiber breakage analysis during composite preparation by melt mixing was carried out using optical microscopy. A polynomial equation was used to model the fiber‐length distribution during melt mixing. The experimental mechanical properties of sisal/PP composites were compared with existing theoretical models such as the modified rule of mixtures, parallel and series models, the Hirsch model, and the Bowyer–Baders model. The dependence of the tensile strength on the angle of measurement with respect to fiber orientation also was modeled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 602–611, 2003  相似文献   

9.
This article mainly investigated the length distributions of the alkali‐free short glass fibers in specimens and their effect on the mechanical and thermal properties of the composites. The results show that the initial length, addition level and feed way of the fibers have obvious effects on the length distributions of fibers in specimens, and thereby the mechanical and thermal properties of the composites. The main‐direction feed way has an intense shear action on the fibers in specimens. With the increase of the fiber content, the reinforcing effect of fibers on the tensile strength, flexural strength and flexural modulus of the composites is increased, while the impact strength is decreased first and then tends to be stable, and the strength factor (F) of the tensile strength to weld line is significantly reduced. The longer the fiber lengths in specimens are, the more obvious the reinforcing and toughening effects are. To some extent, with the increase of the fiber content, the storage modulus (E′) and loss modulus (E′′) of the specimens are increased, but the loss factor (Tan δ) is reduced. The effect of the fiber initial lengths on the heat‐degradation of composites is smaller than that of the fiber content. Meanwhile, adding fibers can improve the thermal stability of the composites, and this law is also confirmed by the heat deflection temperature (HDT) test. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40697.  相似文献   

10.
The world tendency toward using recycled materials demands new products from vegetable resources and waste polymers. In this work, composites made from powdered tire rubber (average particle size: 320 μm) and sisal fiber were prepared by hot‐press molding and investigated by means of dynamic mechanical thermal analysis and tensile properties. The effects of fiber length and content, chemical treatments, and temperature on dynamic mechanical and tensile properties of such composites were studied. The results showed that mercerization/acetylation treatment of the fibers improves composite performance. Under the conditions investigated the optimum fiber length obtained for the tire rubber matrix was 10 mm. Storage and loss moduli both increased with increasing fiber content. The results of this study are encouraging, demonstrating that the use of tire rubber and sisal fiber in composites offers promising potential for nonstructural applications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 670–677, 2004  相似文献   

11.
The main objective of this work was to investigate the effect of reinforcements at different scales on the mechanical properties of natural fiber-reinforced composites. Pure jute and interlaminar hybrid jute/glass fiber-reinforced polymer composites were fabricated. Different types of fillers in two weight fractions (1 and 3 wt. %) were used as second reinforcements in the hybrid jute/glass composites. Tensile, flexural, and impact tests were performed. It was found that the macroscale inter-play hybridization significantly improved the mechanical properties of the pure jute fiber based composites. When the fillers are used as second hybridization, the modified composites presented higher mechanical properties when compared to pure jute composites. However, the effect of fillers on the mechanical properties of the hybrid composites presented various trends due to the interaction between several factors (i.e., particle scale, content, and nature), which cannot always be separated. Increasing the synthetic filler content improved the tensile properties of the filled hybrid composites, while increasing the natural filler content worsen the tensile properties. The flexural strength of the multiscale hybrid composites was improved, while the impact properties were negatively affected.  相似文献   

12.
In this research, fully environment‐friendly, sustainable and biodegradable composites were fabricated, using wheat straw and rice husk as reinforcements for thermoplastics, as an alternative to wood fibers. Mechanical properties including tensile, flexural, and impact strength properties were examined as a function of the amount of fiber and coupling agent used. In the sample preparation, three levels of fiber loading (30, 40, and 50 wt %) and two levels of coupling agent content (0 and 2 wt %) were used. As the percentage of fiber loading increased, flexural and tensile properties increased significantly. Notched Izod results showed a decrease in strength as the percentage of fiber increases. With addition of 50% fiber, the impact strengths decreased to 16.3, 14.4, and 16.4 J/m respectively, for wheat straw‐, rice husk‐, and poplar‐filled composites. In general, presence of coupling agent had a great effect on the mechanical strength properties. Wheat straw‐ and rice husk‐filled composites showed an increase in the tensile and flexural properties with the incorporation of the coupling agent. From these results, we can conclude that wheat straw and rice husk fibers can be potentially suitable raw materials for manufacturing biocomposite products. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
This research work investigates the tensile strength and elastic modulus of the alumina nanoparticles, glass fiber, and carbon fiber reinforced epoxy composites. The first type composites were made by adding 1–5 wt % (in the interval of 1%) of alumina to the epoxy matrix, whereas the second and third categories of composites were made by adding 1–5 wt % short glass, carbon fibers to the matrix. A fourth type of composite has also been synthesized by incorporating both alumina particles (2 wt %) and fibers to the epoxy. Results showed that the longitudinal modulus has significantly improved because of the filler additions. Both tensile strength and modulus are further better for hybrid composites consisting both alumina particles and glass fibers or carbon fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39749.  相似文献   

14.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

15.
Thermoplastic composites based on a commercial acrylic matrix widely used in the field of art protection and restoration (Paraloid B72) and various concentrations (up to 30 wt %) of microcrystalline cellulose powder (MCC) were prepared by melt‐compounding and compression molding. The mechanical behavior of the resulting materials conditioned at a temperature of 23°C and a relative humidity level of 55% was compared to that of the corresponding dried materials. Even though the moisture absorption of the filler was lower than the neat matrix, the maximum moisture content increased with the MCC amount, probably due to the preferential water diffusion path through the microvoids and/or the filler‐matrix interface. Although the increase of moisture content for filled samples, DMTA analysis evidenced a stabilization upon MCC introduction, with an increase of the storage modulus and a decrease of the thermal expansion coefficient proportional to the filler loading. A similar trend was displayed by the corresponding dried materials. The tensile elastic modulus and the ultimate properties such as the stress at break and the tensile energy to break (TEB) of conditioned samples increased proportionally to the filler amount. On the contrary, the failure properties of dried composites were negatively affected by the presence of the microcellulose. It is worthwhile to report that a significant improvement of the creep stability was induced by MCC introduction both for dried and conditioned samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40741.  相似文献   

16.
The article describes the effect of structure of vinyl ester resins (VE) on the mechanical properties of neat sheets as well as glass fabric‐reinforced composites. Different samples of VE were prepared by reacting ester of hexahydrophthalic anhydride (ER) and methacrylic acid (MAA) (1 : 1 molar ratio) followed by reaction of monomethacrylate terminated epoxy resin with glutaric (E) or adipic (F) or sebacic acid (G) (2 : 1 molar ratio). The neat VE were diluted with styrene and sheets were fabricated by using a glass mold. A significant reduction in the mechanical properties was observed by increasing the methylene content of resin backbone (i.e., sample E to G). Glass fabric‐reinforced composites were fabricated by vacuum assisted resin transfer molding (VARTM) technique. Resin content in the laminates was 50 ± 5 wt %. Increase in the number of methylene groups in the vinyl ester resin (i.e., increasing the bridge length) did not show any significant effect on limiting oxygen index (LOI) value (21 ± 1) of the laminates but tensile strength, tensile modulus, flexural strength, and flexural modulus all increased though these values are significantly lower than observed in laminates based on resin B. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Hemp fibers and particles, with different sizes and contents, were used to make hybrid composites based on recycled polypropylene (PP). In particular, the effect of maleated polypropylene (MAPP) addition on the morphology and mechanical properties is reported. The results show that better adhesion is obtained with MAPP addition. In general, fiber content and size had a substantial effect on the tensile, flexural, torsion, and impact properties of the resulting composites. Although, adding MAPP to the samples improved the impact strength of the composites, the values were always lower than neat PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
19.
The cure characteristics and mechanical properties of short‐nylon‐fiber‐reinforced acrylonitrile–butadiene rubber composites with and without an epoxy resin as a bonding agent were studied. The epoxy resin was a good interfacial‐bonding agent for this composite system. The minimum torque showed a marginal increase with the resin concentration. The maximum–minimum torque showed only a marginal change with the resin. The scorch time decreased with the fiber concentration and resin content. The tensile strength and abrasion resistance were improved and the tear resistance and resilience were reduced with the resin concentration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 532–539, 2006  相似文献   

20.
Hybrid composites based on bisphenol‐C‐formaldehyde resin and jute mat with rice, wheat, sugar cane, and jamun husks have been fabricated at 150°C under 30.4 MPa pressure for 2 h. The resin content in composites was 50% of fibers. Tensile strength, flexural strength, electric strength, and volume resistivity of hybrid composites have been evaluated and compared with those of jute‐bisphenol‐C‐formaldehyde composites. It is observed that the tensile strength of composites is found to decrease by 53–72%, which is mainly due to random orientation of sandwiched fibers. Flexural strength has increased by 53–153% except jute–rice husk composite for which it is decreased by 26%. A little change in dielectric breakdown strength (1.89–2.11 kV/mm) is found but volume resistivity of Jute–wheat husk and Jute–jamun husk composites has improved by 437–197% and it is slightly decreased(2.3–25.2%) for the remaining two composites. Thus, hybrid composites possess good mechanical and electrical properties signifying their importance in low strength and light weight engineering applications as well as low cost housing units such as partition and hard boards. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1754–1758, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号