首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This article focuses on the state feedback H control problem for commensurate fractional-order systems with a prescribed H performance. For linear time-invariant fractional-order systems, a sufficient condition to guarantee stability with H performance is firstly presented. Then, by introducing a new flexible real matrix variable, the feedback gain is decoupled with complex matrix variables and further parametrised by the new flexible matrix. Moreover, iterative linear matrix inequality algorithms with initial optimisation are developed to solve the state feedback H suboptimal control problem for fractional-order systems. Finally, illustrative examples are given to show the effectiveness of the proposed approaches.  相似文献   

2.
In this paper, the problem of robust distributed H filtering is investigated for state‐delayed discrete‐time linear systems over a sensor network with multiple fading measurements, random time‐varying communication delays, and norm‐bounded uncertainties in all matrices of the system. The diagonal matrices, whose elements are individual independent random variables, are utilized to describe the multiple fading measurements. Furthermore, the Bernoulli‐distributed white sequences are introduced to model the random occurrence of time‐varying communication delays. In the proposed filtering approach, the stability of the estimation error system is first shown by the Lyapunov stability theory and the H performance is then achieved using a linear matrix inequality method. Finally, two numerical examples are given to show the effectiveness and performance of the proposed approach.  相似文献   

3.
This paper deals with the issue of observer-based H resilient control for a class of switched linear parameter-varying (LPV) systems by utilising a multiple parameter-dependent Lyapunov functions method. First, attention is focused upon the design of a resilient observer, an observer-based resilient controller and a parameter and estimate state-dependent switching signal, which can stabilise and achieve the disturbance attenuation for the given systems. Then, a solvability condition of the H resilient control problem is given in terms of matrix inequality for the switched LPV systems. This condition allows the H resilient control problem for each individual subsystem to be unsolvable. The observer, controller, and switching signal are explicitly computed by solving linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed control scheme is illustrated by its application to a turbofan engine, which can hardly be handled by the existing approaches.  相似文献   

4.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
This article studies the problem of H controller design for networked control systems (NCSs) with time delay and packet dropout. A linear estimation-based time delay and packet dropout compensation method is proposed. The delay switching-based method is presented to deal with the variation of time delay, and H controller design is presented for NCSs with packet dropout compensation by using linear matrix inequality (LMI)-based method. Then the combined delay switching and parameter uncertainty-based method is presented to model the variation of time delay, and H controller design is also presented. The simulation results illustrate the effectiveness of the newly proposed linear estimation-based time delay and packet dropout compensation.  相似文献   

6.
This paper proposed a distributed consensus observer (DCO) based H control method for a class of linear time-invariant (LTI) continuous systems with a sensor and actuator network (SAN). The communication topology of the SAN under consideration is represented by a directed graph, in which the sensor nodes are not able to acquire all the control inputs applied to the target system from the actuator nodes. To overcome this difficulty, a set of novel DCOs embedded in the sensor nodes and a set of DCO-based controllers embedded in the actuator nodes are initially constructed to estimate and control the state of the target system in a fully distributed way, respectively. The constructed DCOs take full advantage of their consensus property and replace the unavailable control inputs with the approximate ones computed on the basis of the state estimates of the underlying sensor node and its neighboring sensor nodes. Subsequently, a design method of DCO-based H control is proposed in terms of bilinear matrix inequality (BMI) to ensure that the closed-loop system is exponentially stable while satisfying a prescribed overall H performance of disturbance attenuation. Moreover, in order to make attenuation level as small as possible, a suboptimal H control design problem is formulated as a BMI optimization problem, and a modified path-following method is provided for solving this problem by using the existing linear matrix inequality (LMI) optimization techniques. Finally, simulation results demonstrate the effectiveness of the proposed method.  相似文献   

7.
8.
This paper focuses on the optimal robust reliable H control for a class of uncertain nonlinear systems with actuator faults. A new method of annihilating uncertain matrix is proposed. Based on this approach, a new method of disposing of the phenomenon of uncertain matrices multiplication is provided. In accordance with the method, the optimal robust reliable H control problem for uncertain nonlinear systems is settled by employing state feedback, in terms of linear matrix inequality (LMI). Finally, two illustrative examples are given to show the feasibility and validity of the proposed method.  相似文献   

9.
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H/H?/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).  相似文献   

10.
This brief note deals with the synthesis of H fixed‐order controllers for linear systems. It is well known that this problem can be formulated as a bilinear matrix inequality optimization problem which is non convex and NP hard to solve. In this paper sufficient conditions are provided which allow to convert the controller design into a linear matrix inequality feasibility problem. A numerical example on a practical control problem shows the application of the proposed technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the problem of robust H control for uncertain stochastic systems with Markovian jump parameters and time‐varying state delays. A linear matrix inequality approach is developed and state feedback controllers are designed, which guarantee mean square asymptotic stability of the closed‐loop system and a prescribed H performance level for all modes and admissible uncertainties. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

12.
This article addresses the issue of designing an H output feedback controller for linear discrete-time systems with impulses. First, a new concept of H output feedback stabilisation for general linear discrete-time systems with impulses is introduced. Then sufficient linear matrix inequality conditions for the stabilisation and H performance of general discrete systems with impulses are proposed. In addition, the result is applied to resolve typical output feedback control problems for systems with impulses, such as the decentralised H output feedback control and the simultaneous H output feedback control. Finally, a numerical simulation is also presented to illustrate the effectiveness of the proposed results.  相似文献   

13.
In this paper, we propose design method of controller for sampled-data systems with variable sampling rate. First, we give design method for both H2 and H controller. For H2 control, performance of the system is introduced according to a standard sampled-data setting. A discrete-time H2 control problem is employed for solving the original problem. Its solvability condition is then established as a parameter-dependent linear matrix inequality. A probabilistic approach is taken for coping with the parameter-dependency. H controller is designed by almost the same manner. Applying both results, we have design method for multi-objective control.  相似文献   

14.
This paper focuses on studying the H state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov–Krasovskii functional are handled by the Jensen’s inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H performance. The proposed conditions are represented by linear matrix inequalities. Optimal H norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.  相似文献   

15.
This article considers the problem of H control for two-dimensional (2-D) singular delayed systems in Roesser models. The problem to be addressed is the design of a state feedback controller such that the acceptability, internal stability and causality of the resulting closed-loop system is guaranteed and a prescribed H performance level is ensured. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of the problem is obtained. A desired state feedback controller can be designed by solving a certain LMI. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

16.
This paper is concerned with the synthesis of reliable controllers for quarter‐car active suspension systems. By a simultaneous mixed LQR/H control approach, a static output feedback controller is derived for guaranteeing good suspension performance under possible sensor fault or suspension component breakdown. The considered simultaneous mixed LQR/H control problem is a nonconvex optimization problem; therefore, the linear matrix inequality approach is not applicable. Based on the barrier method, we solve an auxiliary minimization problem to get an approximate solution for the simultaneous mixed LQR/H control problem. Necessary conditions for the local optimum of the auxiliary minimization problem are derived. Moreover, a three‐stage solution algorithm is developed for solving the auxiliary minimization problem. The simulation shows that the obtained static output feedback suspension controllers can improve suspension performance in nominal mode and all considered failure modes.  相似文献   

17.
This paper is concerned with the quantized state feedback H control problem for discrete‐time linear time‐invariant systems. The quantizer considered here is dynamic and composed of an adjustable “zoom” parameter and a static quantizer. Static quantizer ranges are with practical significance and fully considered here. A quantized H controller design strategy is proposed with taking quantizer errors into account, where an iterative linear matrix inequality (LMI) based optimization algorithm is developed to minimize static quantizer ranges with meeting H performance requirement for quantized closed‐loop systems. An example is presented to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
This paper concerns the problem of robust H sliding mode control for a class of singular stochastic nonlinear systems. Integral sliding mode control is developed to deal with this problem. Based on the integral sliding surface of the design and linear matrix inequality, a sufficient condition which guarantees the sliding mode dynamics is asymptotically mean square admissible and has a prescribed H performance for a class of singular stochastic nonlinear systems is proposed. Furthermore, a sliding mode control law is synthesized such that the singular stochastic nonlinear system can be driven to the sliding surface in finite time. Finally, a numerical example is proposed to illustrate the effectiveness of the given theoretical results.  相似文献   

19.
This article considers the problem of H filter design for stochastic systems with time-varying delay. The time delay is assumed to be of interval type. Attention is focused on the design of delay-dependent filters that guarantee the asymptotic stability in mean square and a prescribed noise attenuation level in an H sense for the filtering error dynamics. The delay-dependent H filter design scheme is proposed in terms of a linear matrix inequality. A numerical example is used to illustrate the effectiveness of the proposed approach.  相似文献   

20.
This paper focuses on the H model reduction problem of positive fractional order systems. For a stable positive fractional order system, we aim to construct a positive reduced‐order fractional system such that the associated error system is stable with a prescribed H performance. Then, based on the bounded real lemma for fractional order systems, a sufficient condition is given to characterize the model reduction problem with a prescribed H‐norm error bound in terms of a linear matrix inequality (LMI). Furthermore, by introducing a new flexible real matrix variable, the desired reduced‐order system matrices are decoupled with the complex matrix variable and further parameterized by the new matrix variable. A corresponding iterative LMI algorithm is also proposed. Finally, several illustrative examples are given to show the effectiveness of the proposed algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号