首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of how light‐induced degradation influences the fundamental photophysical processes in the active layer of poly(3‐hexylthiophene)/[6,6]‐phenyl C61‐butyric acid methyl ester (P3HT/PCBM) solar cells is presented. Non‐encapsulated samples are systematically aged by exposure to AM 1.5 illumination in the presence of dry air for different periods of time. The extent of degradation is quantified by the relative loss in the absorption maximum of the P3HT, which is varied in the range 0% to 20%. For degraded samples an increasing loss in the number of excitons within the P3HT domains is observed with longer ageing periods. This loss occurs rapidly, within the first 15 ps after photoexcitation. A more pronounced decrease in the population of polarons than excitons is observed, which also occurs on a timescale of a few picoseconds. These observations, complemented by a quantitative analysis of the polaron and exciton population dynamics, unravel two primary loss mechanisms for the performances of aged P3HT/PCBM solar cells. One is an initial ultrafast decrease in the polaron generation, apparently not related to the exciton diffusion to the polymer/fullerene interface; the second, less significant, is a loss in the exciton population within the photoexcited P3HT domains. The steady‐state photoinduced absorption spectra of degraded samples exhibits the appearance of a signal ascribed to triplet excitons, which is absent for non‐degraded samples. This latter observation is interpreted considering the formation of degraded sites where intersystem crossing and triplet exciton formation is more effective. The photovoltaic characteristics of same blends are also studied and discussed by comparing the decrease in the overall power conversion efficiency of solar cells.  相似文献   

2.
The evolution of film structure is reported during solution casting of PCDTBT:PC70BM 1:4 wt%, a polymer:fullerene blend system that finds application in an organic photovoltaic device. Using the complimentary techniques of grazing‐incidence wide‐angle X‐ray scattering and spectroscopic ellipsometry, a number of distinct processes that occur during film formation are identified. This includes the growth of fullerene molecules into nanoscale aggregates, the onset of which coincides with the solubility limit of the material in the casting solvent being reached. An apparent delay in Bragg scatter from the PCDTBT‐rich phase of the film suggests that, for the film composition studied here, the aggregation of PC70BM precedes weak self‐organisation of the conjugated polymer. This behaviour is compared with the drying dynamics of a number of different polymer:fullerene blends that each contain a high weight fraction of fullerene molecules, and a range of comparable solid concentrations are identified beyond which the precipitation of fullerene aggregates from solution occurs. These observations provide an insight into the development of structure in relatively amorphous polymer:fullerene blends for organic photovoltaic applications and potentially assists the future optimisation of this category of materials.  相似文献   

3.
The charge transport and photogeneration in solar cells based on the low bandgap‐conjugated polymer, poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b; 3,4‐b′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) and fullerenes is studied. The efficiency of the solar cells is limited by a relatively low fill factor, which contradicts the observed good and balanced charge transport in these blends. Intensity dependent measurements display a recombination limited photocurrent, characterized by a square root dependence on effective applied voltage, a linear dependence on light intensity and a constant saturation voltage. Numerical simulations show that the origin of the recombination limited photocurrent stems from the short lifetime of the bound electron‐hole pairs at the donor/acceptor interface.  相似文献   

4.
Exciton dissociation is a key step for the light energy conversion to electricity in organic photovoltaic (OPV) devices. Here, excitonic dissociation pathways in the high‐performance, low bandgap “in‐chain donor–acceptor” polymer PTB7 by transient optical absorption (TA) spectroscopy in solutions, neat films, and bulk heterojunction (BHJ) PTB7:PC71BM (phenyl‐C71‐butyric acid methyl ester) films are investigated. The dynamics and energetics of the exciton and intra‐/intermolecular charge separated states are characterized. A distinct, dynamic, spectral red‐shift of the polymer cation is observed in the BHJ films in TA spectra following electron transfer from the polymer to PC71BM, which can be attributed to the time evolution of the hole–electron spatial separation after exciton splitting. Effects of film morphology are also investigated and compared to those of conjugated homopolymers. The enhanced charge separation along the PTB7 alternating donor–acceptor backbone is understood by intramolecular charge separation through polarized, delocalized excitons that lower the exciton binding energy. Consequently, ultrafast charge separation and transport along these polymer backbones reduce carrier recombination in these largely amorphous films. This charge separation mechanism explains why higher degrees of PCBM intercalation within BHJ matrices enhances exciton splitting and charge transport, and thus increase OPV performance. This study proposes new guidelines for OPV materials development.  相似文献   

5.
6.
The charge transportation in poly(3‐butylthiophene) (P3BT)/insulating polymer composites is studied both microscopically and macroscopically. The increased mobility of free charge carriers, in particular hole mobility, contributes to the enhanced electrical conductivity of this semiconductor/insulator composite. The conductivity origin of the composite, as revealed by conductive‐atomic force microscopy (C‐AFM), comes mainly from the P3BT network, whose carrier mobility has been improved as a result of reduced activation energy for charge transportation upon forming an interface with the insulating matrix. Both the huge interfacial area and interconnected conductive component are morphologically required for the enhanced electrical property of the composite. An increased size of the P3BT domains, which correspondingly reduces the interfacial area between the two components, ruins the enhancement. This study clarifies the mechanism of the higher electrical properties achieved in a semiconducting polymer upon blending with an insulating polymer, which will further promote the development of these low‐cost, easily processable, and environmentally stable composites.  相似文献   

7.
Low bandgap polymer (LBG):fullerene mixtures are some of the most promising organic photovoltaic active layers. Unfortunately, there are no post‐deposition treatments available to rationally improve the morphology and performance of as‐cast LBG:fullerene OPV active layers, where thermal annealing usually fails. Therefore, there is a glaring need to develop post‐deposition methods to guide the morphology of LBG:fullerene bulk heterojunctions towards targeted structures and performance. In this paper, the structural evolution of PCPDTBT:PCBM mixtures with solvent annealing (SA) is examined, focusing on the effect of solvent quality of the fullerene and polymer in the annealing vapor on morphological evolution and device performance. The results indicate that exposure of this active layer to the solvent vapor controls the ordering of PCPDTBT and PCBM phase separation very effectively, presumably by inducing component mobility as the solvent plasticizes the mixture. These results also unexpectedly indicate that solvent annealing in a selective solvent provides a method to invert the morphology of the LBG:fullerene mixture from a polymer aggregate dispersed in a polymer:fullerene matrix to fullerene aggregates dispersed in a polymer:fullerene matrix. The judicious choice of solvent vapor, therefore, provides a unique method to exquisitely control and optimize the morphology of LBG conjugated polymer/fullerene mixtures.  相似文献   

8.
The charge carrier dynamics in blend films of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and conjugated polymers with different ionization potentials are measured using transient absorption spectroscopy to study the formation mechanism of PCBM radical cation, which was previously discovered for blend films of poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) and PCBM. On a nanosecond time scale after photoexcitation, polymer hole polaron and PCBM radical anion are observed but no PCBM radical cation is found in the blends. Subsequently, the fraction of polymer hole polarons decreases and that of PCBM radical cations increases with time. Finally, the fraction of PCBM radical cations becomes constant on a microsecond time scale. The final fraction of PCBM radical cation is dependent on the ionization potential of polymers but independent of the excitation wavelength. These findings show that the formation of PCBM radical cation is due to hole injection from polymer to PCBM domains. Furthermore, the energetic conditions for such hole injection in polymer/PCBM blend films are discussed on the basis of Monte Carlo analysis for hole hopping in a disordered donor/acceptor heterojunction with varying energetic parameters.  相似文献   

9.
The correlation between molecular scale morphology and charge generation across hybrid photovoltaic interfaces made of metal oxides (ZnO and TiO2) and a prototypical electron donor polymer, P3HT, is investigated. Device characterization and UV‐NIR transient absorption spectroscopy are used to demonstrate that the local disorder of the polymer chains on the surface of the metal–oxide film provides better electron injection efficiencies than the crystalline phases, though the latter are essential for energy and charge transport. An unambiguous spectroscopic tool is also demonstrated to probe the occupation of the conduction band of ZnO following the electron injection from the polymer through the ultrafast tracking of the Burstein‐Moss effect.  相似文献   

10.
One way to improve power conversion efficiency (PCE) of polymer based bulk‐heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis‐adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3‐hexyl thiophene) (P3HT). However, for the most promising low band‐gap polymer (LBP) system, replacing PCBM with ICBA results in poor short‐circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as‐cast LBP/bis‐fullerene BHJ photovoltaics is attempted by adding a co‐solvent to the polymer/fullerene solution prior to film deposition. Varying the solubility of polymer and fullerene in the co‐solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as‐cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co‐solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co‐solvent is selective to ICBA. The resultant morphology improves PCE by up to 246%. A quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.  相似文献   

11.
Apparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility and protection of trapped charge carriers from recombination by a donor–acceptor phase separation until re‐emission from these deep states. In order to clarify which mechanism is dominant temperature‐ and illumination‐dependent charge extraction measurements are performed under open circuit and short circuit conditions at poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PC61BM) and PTB7:PC71BM (poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]) solar cells in combination with current–voltage characteristics. It is shown that the charge carrier density n dependence of the mobility μ and the recombination prefactor are different for P3HT:PC61BM at temperatures below 300 K and PTB7:PC71BM at room temperature. Therefore, in addition to μ(n), a detrapping limited recombination in systems with at least partial donor–acceptor phase separation is required to explain the high recombination orders.  相似文献   

12.
A multi‐ring, ladder‐type low band‐gap polymer (PIDTCPDT‐DFBT) is developed to show enhanced light harvesting, charge transport, and photovoltaic performance. It possesses excellent planarity and enhanced effective conjugation length compared to the previously reported fused‐ring polymers. In order to understand the effect of extended fused‐ring on the electronic and optical properties of this polymer, a partially fused polymer PIDTT‐T‐DFBT is also synthesized for comparison. The fully rigidified polymer provides lower reorganizational energy, resulting in one order higher hole mobility than the reference polymer. The device made from PIDTCPDT‐DFBT also shows a quite promising power conversion efficiency of 6.46%. Its short‐circuit current (14.59 mA cm?2) is also among the highest reported for ladder‐type polymers. These results show that extending conjugation length in fused‐ring ladder polymers is an effective way to reduce band‐gap and improve charge transport for efficient photovoltaic devices.  相似文献   

13.
A general method is proposed to produce oriented and highly crystalline conducting polymer layers. It combines the controlled orientation/crystallization of polymer films by high‐temperature rubbing with a soft‐doping method based on spin‐coating a solution of dopants in an orthogonal solvent. Doping rubbed films of regioregular poly(3‐alkylthiophene)s and poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b ]thiophene) with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) yields highly oriented conducting polymer films that display polarized UV–visible–near‐infrared (NIR) absorption, anisotropy in charge transport, and thermoelectric properties. Transmission electron microscopy and polarized UV–vis–NIR spectroscopy help understand and clarify the structure of the films and the doping mechanism. F4TCNQ? anions are incorporated into the layers of side chains and orient with their long molecular axis perpendicular to the polymer chains. The ordering of dopant molecules depends closely on the length and packing of the alkyl side chains. Increasing the dopant concentration results in a continuous variation of unit cell parameters of the doped phase. The high orientation results in anisotropic charge conductivity (σ) and thermoelectric properties that are both enhanced in the direction of the polymer chains (σ = 22 ± 5 S cm?1 and S = 60 ± 2 µV K?1). The method of fabrication of such highly oriented conducting polymer films is versatile and is applicable to a large palette of semiconducting polymers.  相似文献   

14.
15.
16.
The impact of controlled solvent vapor exposure on the morphology, structural evolution, and function of solvent‐processed poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bilayers is presented. Grazing incident wide angle X‐ray scattering (GIWAXS) shows that the crystallization of P3HT increases with solvent exposure, while neutron reflectivity shows that P3HT simultaneously diffuses into PCBM, indicating that an initial bilayer structure evolves into a bulk heterojunction structure. Small angle neutron scattering (SANS) shows the agglomeration of PCBM and the formation of a PCBM pure phase when solvent annealing for 90 min. The structural evolution can be described as occurring in two stages: the first stage combines the enhanced crystallization of P3HT and diffusion of PCBM into P3HT, while the second stage entails the agglomeration of PCBM and formation of a PCBM pure phase. The phase separation of PCBM from P3HT is not driven by P3HT crystallinity, but is due to the concentration of PCBM exceeding the miscibility limit of PCBM in P3HT. Correlation of the morphology to photovoltaic activity shows that device performance significantly improves with solvent annealing for 90 min, indicating that both sufficient P3HT crystallization and formation of a PCBM pure phase are crucial in the optimization of the morphology of the active layer.  相似文献   

17.
The presence of charge transfer states generated by the interaction between the fullerene acceptor PCBM and two alternating copolymers of fluorene with donor–acceptor–donor comonomers are reported; the generation leads to modifications in the polymer bandgap and electronic structure. In one of polymer/fullerene blends, the driving force for photocurrent generation, i.e., the gap between the lowest unoccupied molecular orbitals of the donor and acceptor, is only 0.1 eV, but photocurrent is generated. It is shown that the presence of a charge transfer state is more important than the driving force. The charge transfer states are visible through new emission peaks in the photoluminescence spectra and through electroluminescence at a forward bias. The photoluminescence can be quenched under reverse bias, and can be directly correlated to the mechanism of photocurrent generation. The excited charge transfer state is easily dissociated into free charge carriers, and is an important intermediate state through which free charge carriers are generated.  相似文献   

18.
Charge transfer (CT) states play a key role in the functioning of organic solar cells; however, understanding the mechanism by which CT states dissociate efficiently into free charges remain a conceptual challenge. Here, the electric field dependent dynamics of charge generation in planar cyanine/fullerene photovoltaic cells is probed over a wide temperature range using time-resolved Stark effect experiments, transient absorption, and photocurrent measurements. Results indicate that dissociation of thermalized CT states is the rate-limiting step for all temperatures. The dissociation rate strongly depends on the field, but is temperature independent. The results also suggest that the yield of generated charges is temperature independent. Model electrostatic calculations illustrate that specific orientations of the cyanine crystal relative to C60 create a repulsive potential for an electron near the interface that is largely due to the quadrupole moment of the unit cell. In combination with the electron-hole coulomb attraction and the electric field-induced barrier lowering, a high-energy potential barrier forms with a narrow width of a few nanometers. It is proposed that charge separation occurs via a field-dependent electron tunneling mechanism through that barrier, which is temperature independent. The results support a thus far overlooked pathway for CT state dissociation via carrier tunneling.  相似文献   

19.
The time‐of‐flight method has been used to study the effect of P3HT molecular weight (Mn = 13–121 kDa) on charge mobility in pristine and PCBM blend films using highly regioregular P3HT. Hole mobility was observed to remain constant at 10?4 cm2V?1s?1 as molecular weight was increased from 13–18 kDa, but then decreased by one order of magnitude as molecular weight was further increased from 34–121 kDa. The decrease in charge mobility observed in blend films is accompanied by a change in surface morphology, and leads to a decrease in the performance of photovoltaic devices made from these blend films.  相似文献   

20.
In this study, it is demonstrated that a finer nanostructure produced under a rapid rate of solvent removal significantly improves charge separation in a high‐performance polymer:fullerene bulk‐heterojunction blend. During spin‐coating, variations in solvent evaporation rate give rise to lateral phase separation gradients with the degree of coarseness decreasing away from the center of rotation. As a result, across spin‐coated thin films the photocurrent at the first interference maximum varies as much as 25%, which is much larger than any optical effect. This is investigated by combining information on the surface morphology of the active layer imaged by atomic force microscopy, the 3D nanostructure imaged by electron tomography, film formation during the spin coating process imaged by optical interference and photocurrent generation distribution in devices imaged by a scanning light pulse technique. The observation that the nanostructure of organic photovoltaic blends can strongly vary across spin‐coated thin films will aid the design of solvent mixtures suitable for high molecular‐weight polymers and of coating techniques amenable to large area processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号