首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
Poly(acrylamide‐co‐potassium methacrylate) hydrogels were prepared by free‐radical simultaneous polymerization with aqueous solutions of acrylamide (AAm) and potassium methacrylate (KMA) with a redox initiator. The copolymerization was performed with eight different compositions of KMA at a fixed concentration of oil‐soluble crosslinkers, including 1,4‐butanediol diacrylate and ethylene glycol dimethacrylate (EGDMA). For every composition of AAm/KMA copolymer, the percentage swelling, swelling equilibrium, and diffusion characteristics were investigated. The copolymers were further studied for deswelling properties. The power law relationships of the hydrogels were evaluated for variation in terms of saline concentration. The AAm/KMA copolymers were confirmed by IR spectroscopy. Thermal studies of hydrogels were performed with differential scanning calorimetry and thermogravimetric analysis. EGDMA was found to be a better crosslinker for obtaining higher swelling and deswelling properties for the AAm/KMA hydrogels. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1153–1164, 2005  相似文献   

2.
Different from the conventional method of developing stimuli‐sensitive textiles by graft copolymerization of environmental responsive polymers onto the fabric, the coating technique was applied to bond temperature‐sensitive hydrogels with cotton fabric through chemical covalent in our work. A temperature‐sensitive linear copolymer of Ntert‐butylacrylamide (NTBA) and acrylamide (AAm) was prepared in methanol. Then, the cotton fabrics were coated using an aqueous solution of this copolymer containing 1,2,3,4‐butanetertracarboxylic acid as a crosslinker and sodium hypophosphite (SHP) as a catalyst, followed by drying and curing. The surface of the cotton fabrics was bonded on more or less coatings of poly (NTBA‐co‐AAm) hydrogels, as verified by Fourier transform infrared spectroscopy and scanning electron microscopy images. The poly(NTBA‐co‐AAm) hydrogels‐coated fabrics exhibited temperature sensitive, and the temperature interval of the deswelling transition was higher than lower critical solution temperature of linear copolymer solution. The coated fabrics presented good water‐impermeable ability because of the swelling of hydrogels bonded, especially when the add‐on was as high as 14.14%. Environmental scanning electron microscopy images revealed that coating hydrogels swelled and covered on the surface as a barrier to prevent water from penetrating once the coated fabric came into contact with water. The findings demonstrate that the temperature‐sensitive hydrogels can be covalently bonded on the cotton fabrics by coating technique and the coated fabrics have potential on immersion fabrics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

5.
The aim of the present work was to prepare microgel nanocomposites based on silver and magnetite to apply as adsorbents and heterogeneous catalysts for removal of methylene blue (MB) cationic dye from aqueous solution. For this, 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and acrylamide (AAm) monomers were used to prepare AMPS/AAm microgel based on the emulsion technique. Ag and Fe3O4 nanoparticles were embedded into the AMPS/AAm microgel using the in situ technique. Their particle sizes, surface charges, crystalline lattice structure, morphology, magnetic properties and thermal stability were investigated. The AMPS/AAm hydrogel nanocomposites were used as an adsorbent to remove MB dye. The AMPS/AAm microgel nanocomposites were tested as catalysts to reduce MB and degrade its chemical structure with heterogeneous Fenton oxidation using Ag and Fe3O4 nanocomposites, respectively. This study presents promising data as the prepared materials used as adsorbents and catalysts show competitive features compared with the data presented in the literature. © 2019 Society of Chemical Industry  相似文献   

6.
Summary: The swelling equilibrium of poly(acrylamide) [PAAm] and poly[acrylamide‐co‐(itaconic acid)] [P(AAm/IA)] hydrogels was studied as a function of temperature and IA content in aqueous solutions of surfactants: sodium dodecyl sulfate (SDS, anionic) and hexadecyltrimethylammonium bromide (HTAB, cationic). P(AAm/IA) hydrogels in water exhibited reentrant conformational transitions depending on temperature, whereas PAAm hydrogels were not affected with the change of temperature. The equilibrium‐volume‐swelling ratio of P(AAm/IA) hydrogels increased sharply in SDS solutions, with an increase of the mole percent of IA. However, in HTAB solution, the equilibrium‐volume‐swelling ratio of these hydrogels decreased with an increase of IA content.

The equilibrium volume‐swelling ratios of the hydrogels in water shown as a function of temperature.  相似文献   


7.
In this study the poly(acrylamide‐co‐maleic acid) hydrogels containing small amounts of maleic acid have been synthesized, and the effect of pH, ionic strength, and nature of counterions on the equilibrium water uptake has been investigated. The incorporation of small amount of maleic acid results in the transition of swelling mechanism from Fickian to non‐Fickian. The equilibrium mass swelling has been found to increase with pH of the swelling medium while increase in ionic strength causes a decrease in the swelling. The amount of maleic acid present in the hydrogel affects the swelling behavior in rather an unusual way. With lower acid contents, the equilibrium mass swelling increases while higher concentrations of maleic acid cause a decrease in the degree of swelling. The hydrogels have been found to undergo a number of swelling–deswelling cycles when pH of the swelling medium changes from 8.0 to 2.0. Hydrogels require more time to deswell compared to the time required for swelling, which has been explained on the basis of the fact that gels follow different mechanisms for the two processes. Various swelling parameters such as equilibrium mass swelling, diffusion coefficient, intrinsic diffusion coefficient, swelling exponent, etc., have been evaluated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2782–2789, 2001  相似文献   

8.
Macroporous superabsorbent hydrogels (SAHs) composed of acrylamide (AAm) and sodium methacrylate (NMA) were prepared by aqueous solution polymerization in the presence of a glucose solution. Their swelling capacity was investigated as a function of the concentrations of the glucose solution, sodium methacrylate, crosslinker, initiator, and activator. The porosity of the poly(acrylamide‐co‐sodium methacrylate) superabsorbent hydrogels was confirmed using scanning electron microscopy. The SAHs were characterized by IR spectroscopy. To estimate the effect on the swelling behavior, three types of crosslinkers were employed: N,N′‐methylenebisacrylamide, 1,4‐butanediol diacrylate, and diallyl phthalate. Network structural parameters such as initial swelling rate, swelling rate constant, and maximum equilibrium swelling were evaluated by water absorption measurement. The equilibrium water content (EWC%) of the AAm–NMA macroporous SAHs was found to be in the range of 93.31–99.68, indicating that these SAHs may have applications as biomaterials in the medicinal, pharmaceutical, and veterinary fields. Most of the SAHs prepared in this investigation followed non‐Fickian‐type diffusion, and few followed a case II– or super–case II‐type diffusion. The diffusion coefficients of these macroporous SAHs were investigated. Further, the swelling behavior of these SAHs also was investigated at different pHs and in different salt solutions and simulated biological fluids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3202–3214, 2006  相似文献   

9.
Thermoresponsive hydrogels based on N‐isopropylacrylamide and N‐vinylimidazole were synthesized, and their swelling–deswelling behavior was studied as a function of the total monomer concentration. For copolymeric structures with better thermoresponsive properties with respect to poly(N‐isopropylacrylamide‐coN‐vinylimidazole) hydrogels, these hydrogels were protonated with HCl and HNO3, and the copolymer behaviors were compared with those of the unprotonated hydrogels. The temperature was changed from 4 to 70°C at fixed pHs and total ionic strengths. The equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all the hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1619–1624, 2004  相似文献   

10.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

11.
The swelling behaviors of poly(acrylamide) (PAAm)/clay nanocomposite hydrogels (hereinafter abbreviated as NC gels) in acrylamide (AAm) aqueous solution have been investigated. As‐prepared PAAm/clay hydrogels (S‐M gels) were posttreated by immersing them in AAm aqueous solution. It was found that the swelling ratio of the NC gels increased greatly when the concentration of the solution is below a critical concentration (c*), whereas the gels were disintegrated in the solution when the concentration of the solution is above the c*. Some disc‐like particles were found in the AAm solution accompanying with the unusual swelling behaviors. This unusual swelling behavior is resulted from the change of network structure of the NC gels in AAm aqueous solution, which was further convinced by transmission electron microscopy and element analyses. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The swelling behavior of balanced acrylamide (AAm)‐based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. Equimolar ratio of the ionic comonomers 4‐vinylpyridine (cationic monomer) and acrylic acid (anionic monomer) were used together with the nonionic monomer AAm in the hydrogel preparation. The variations of the hydrogel volume in response to changes in pH were measured. It was found that the hydrogels are in a collapsed state not only at the pH of the isoelectric point pHIEP but also over a wide range of pH including pHIEP. The width of the collapsed plateau increased and the hydrogels assumed a more compact state as the ionic group content is increased. The antipolyelectrolyte behavior was observed along the collapsed plateau region, where the gel occupies a larger volume in salt solution. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
This article describes the synthesis and swelling behavior of a superabsorbing hydrogel based on sodium alginate (NaAlg) and polyacrylonitrile (PAN). The physical mixture of NaAlg and PAN was hydrolyzed with a solution of NaOH to yield an alginate–poly(sodium acrylate‐co‐acrylamide) [Alg–poly(NaAA‐co‐AAm)] superabsorbent hydrogel. A proposed mechanism for hydrogel formation was suggested, and the structure of the product was established with Fourier transform infrared spectroscopy. The effects of reaction variables were systematically optimized to achieve a hydrogel with a swelling capacity as high as possible. Under the optimized conditions concluded, the maximum capacity of swelling in distilled water was 610 g/g. The absorbency of the synthesized hydrogels was also measured in various salt solutions. The swelling ratios decreased with an increase in the ionic strength of the salt solutions. In addition, the swelling capacity was determined in solutions with pHs ranging from 1 to 13. The Alg–poly(NaAA‐co‐AAm) hydrogel exhibited pH responsiveness, so a swelling–deswelling pulsatile behavior was recorded at pHs 2 and 8. This on–off switching behavior made the hydrogel as a good candidate for the controlled delivery of bioactive agents. Finally, the swelling kinetics of the hydrogels with various particle sizes were preliminarily investigated as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2927–2937, 2006  相似文献   

14.
A novel type of highly swollen hydrogels based on acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) crosslinked by 1,4‐butanediol dimethacrylate (BDMA) was prepared by free radical solution polymerization in aqueous media. Water uptake and dye sorption properties of polyelectrolyte AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were investigated as a function of composition to find materials with swelling and sorption properties. FTIR analyses were made. Swelling experiments were performed in water and dye solution at 25°C, gravimetrically. Highly swollen AAm/AMPS and AAm/AMPS/Bent hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as Lauths violet “LV, (Thionin).” Swelling of AAm/AMPS hydrogels was increased up to 1,920–9,222% in water and 867–4,644% in LV solutions, while AAm hydrogels swelled 905% in water and swelling of AAm/AMPS/Bent hydrogels was increased up to 2,756–10,422% in water and 1,200–3,332% in LV solutions, while AAm/Bent hydrogels swelled 849% in water. Some swelling kinetic and diffusional parameters were found. Water and LV diffusion into hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, LV into AAm/AMPS and AAm/AMPS/Bent hydrogel was studied by batch sorption technique at 25°C. The amount of the dye sorbed per unit mass removal effiency and partition coefficient of the hydrogels was investigated. The influence of AMPS content in the hydrogels to sorption was examined. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Multifunctional hydrogels based on chitosan–quercetin (CHITQ) conjugate are prepared by a thermo‐induced radical procedure in the presence of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and N,N′‐methylenebis(acrylamide) (MEBA). At first, quercetin (Q) is grafted onto chitosan backbone with a functionalization degree of 275 mg of Q per gram of conjugate, as calculated by 1H‐NMR analyses to impart antioxidant properties to the polysaccharide. Then, a pH and temperature sensitive hydrogel was obtained by involving CHITQ and NIPAAm in the polymerization reaction. The accessibility of phenolic moieties is modified in response to the hydrogel swelling/deswelling, as confirmed by antioxidant tests performed at different temperatures. Dual stimuli‐responsive hydrogels are proposed for the delivery of caffeine as model drug. The release profiles of caffeine depict a system particularly performing as on/off device at acidic pH with excellent applicability prospects.  相似文献   

16.
A series of random copolymers of acrylamide and N‐vinylimidazole, poly(AAm‐co‐NVI), with various compositions were prepared using redox copolymerization. The influence of environmental conditions such as pH, temperature, and ionic strength on the swelling behavior of the copolymeric hydrogels was investigated. The hydrogels exhibited the highest equilibrium swelling in basic medium at high temperature. Equilibrium swelling decreased with rising ionic strength at pH 5.0. As pH increased, equilibrium swelling of the hydrogels increased at pH 11.0 and I = 0.20 M. Swelling kinetics of the hydrogels was found to be non‐Fickian at 25°C. The process tended to be Fickian at higher pH and temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1783–1788, 2005  相似文献   

17.
Microgel of a water‐soluble monomer [2‐(N‐morpholino)ethyl methacrylate (MEMA)] was successfully prepared in aqueous media via emulsion polymerization by using a novel water‐soluble block copolymer as stabilizer. Characterization studies confirmed monodisperse spherical morphologies of microgels with a diameter of 280 nm at neutral pH. These microgels exhibited multi‐responsive behavior by responding solution pH, temperature, ionic strength, type of dispersing media, and magnetic particles. It swells well at low pH (<6.0) and at low temperature, but shrinks above pH 6.0, or even more shrinks with salt addition at neutral and basic conditions. In addition, the hydrodynamic diameter of PMEMA microgel was decreased gradually at basic and neutral pH when solution temperature was increased up to the lower critical solution temperature of PMEMA (LCST, 35°C), but microgel diameter did not change much above LCST. Multi‐responsive behavior of PMEMA microgel was investigated by using dynamic light scattering, UV‐Vis spectrophotometer and zeta potentiometer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42072.  相似文献   

18.
A series of crosslinked copolymers with cationic nature have been prepared based on acrylamide (AAm) and [3‐(methacryloylamino)propyl]trimethyl ammonium chloride (MAPTAC) using N,N′ methylene‐bis‐acrylamide (MBA) as crosslinking agent. Taguchi's method has been employed for the purpose of formulation design and optimization as well as investigating the effects of various compositional parameters, such as total monomer concentration, cationic monomer and crosslinking agent concentration. The swelling behaviour of the synthesized gels in electrolyte solutions composed of ions with different valency has been studied and compared with an anionic‐based superabsorbent. The swelling capacity and absorbency were found to be enhanced with increase of the MAPTAC moieties of the copolymer chains, and therefore increase of their cationic character. All the cationic hydrogels prepared had greater swelling capacity, with less change in their swelling behaviour, when immersed into aqueous solutions containing multivalent cations. The anionic‐based hydrogels collapsed in similar ionic solutions with moderate‐to‐high ionic strength and did not show any tendency to re‐swell. The complex modulus (G*) of the crosslinked copolymers in the equilibrium swollen state was measured by rheomechanical spectroscopy and was correlated with the chemical composition of the network. Thermogravimetric analysis of the dry cationic superabsorbent showed more bound water but similar thermal behaviour to crosslinked polyacrylamide Copyright © 2003 Society of Chemical Industry  相似文献   

19.
In this study, a random copolymer of acylamide and acrylic acid [poly(AAm‐co‐AA)] was prepared by a redox copolymerization method of their aqueous solutions. The effects of initial AAm/AA mole ratio, PEG 4000 content, and N,N′‐methylenebisacrylamide concentration on swelling behavior were investigated in water. Average molecular weights between crosslinks, percentage swelling, swelling equilibrium values, and diffusion/swelling characteristics (i.e., the structure of network constant, the type of diffusion, the initial swelling rate, swelling rate constant) were evaluated for every hydrogel systems. The hydrogels showed mass swelling capabilities in the range 789–1040% (for AAm/AA hydrogels), 769–930% (for AAm/AA hydrogels in the presence of PEG 4000), and 716–1040% (for AAm/AA hydrogels containing different concentrations of the crosslinker). The swelling capabilities of the hydrogels decreased with the increasing AA, PEG 4000, and crosslinker concentrations. The diffusion of water into AAm/AA hydrogels was found to be a non‐Fickian type. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1289–1293, 2004  相似文献   

20.
Extraction or concentration with temperature‐sensitive hydrogels is a novel separation technology. In this study, N‐isopropylacrylamide (NIPA) was synthesized by acrylonitrile and isopropanol. Poly(N‐isopropylacrylamide) (PNIPA) and copolymer of NIPA and 2‐acrylamide‐2‐methylpropane sulfonate [P(NIPA‐co‐AMPS)] hydrogels were prepared by radiation polymerization. Dependence of their swelling behavior on temperature was studied. Effects of radiation dose on polymerization, feed composition on thermoresponse, electrolyte on relative swelling ratio, and swelling and deswelling kinetics were investigated. The experimental results showed that P(NIPA‐co‐AMPS) hydrogels with low content of AMPS/NIPA (1–5 %), prepared at a radiation dose‐rate of 1 kGy/h and total dose of 30–40 kGy, could enhance the swelling ratio of PNIPA hydrogels significantly and raise the phase‐transition temperatures. P(NIPA‐co‐AMPS) hydrogels produced under optimum conditions were used to concentrate aqueous bovine serum albumin (BSA, M = 69 000 g mol?1) solution. When aqueous BSA concentration was below 5 %, the separation efficiency was more than 80 % with low cost and low energy consumption. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号